Advertisement
Original Research| Volume 185, P53-60, May 2023

Download started.

Ok

Observational study investigating the level of support from a convolutional neural network in face and scalp lesions deemed diagnostically ‘unclear’ by dermatologists

Published:March 03, 2023DOI:https://doi.org/10.1016/j.ejca.2023.02.025

      Highlights

      • Correct clinical diagnoses in skin lesions of face and scalp (FSL) are challenging.
      • Convolutional neural networks (CNN) are increasingly applied for skin diagnostics.
      • We investigated CNN-support for FSL diagnostically ‘unclear’ to dermatologists.
      • Following CNN classifications significantly reduced incorrect management decisions.

      Abstract

      Background

      The clinical diagnosis of face and scalp lesions (FSL) is challenging due to overlapping features. Dermatologists encountering diagnostically ‘unclear’ lesions may benefit from artificial intelligence support via convolutional neural networks (CNN).

      Methods

      In a web-based classification task, dermatologists (n = 64) diagnosed a convenience sample of 100 FSL as ‘benign’, ‘malignant’, or ‘unclear’ and indicated their management decisions (‘no action’, ‘follow-up’, ‘treatment/excision’). A market-approved CNN (Moleanalyzer-Pro®, FotoFinder Systems, Germany) was applied for binary classifications (benign/malignant) of dermoscopic images.

      Results

      After reviewing one dermoscopic image per case, dermatologists labelled 562 of 6400 diagnoses (8.8%) as ‘unclear’ and mostly managed these by follow-up examinations (57.3%, n = 322) or excisions (42.5%, n = 239). Management was incorrect in 58.8% of 291 truly malignant cases (171 ‘follow-up’ or ‘no action’) and 43.9% of 271 truly benign cases (119 ‘excision’). Accepting CNN classifications in unclear cases would have reduced false management decisions to 4.1% in truly malignant and 31.7% in truly benign lesions (both p < 0.01). After receiving full case information 239 diagnoses (3.7%) remained ‘unclear’ to dermatologists, now triggering more excisions (72.0%) than follow-up examinations (28.0%). These management decisions were incorrect in 32.8% of 116 truly malignant cases and 76.4% of 123 truly benign cases. Accepting CNN classifications would have reduced false management decisions to 6.9% in truly malignant lesions and to 38.2% in truly benign cases (both p < 0.01).

      Conclusions

      Dermatologists mostly managed diagnostically ‘unclear’ FSL by treatment/excision or follow-up examination. Following CNN classifications as guidance in unclear cases seems suitable to significantly reduce incorrect decisions.

      Abbreviations:

      95% CI (95% confidence interval), AI (artificial intelligence), AK (actinic keratosis), BCC (basal cell carcinoma), CNN (convolutional neural network), FSL (face and scalp lesion), LM (lentigo maligna), LMM (lentigo maligna melanoma), SK (seborrhoeic keratosis)

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to European Journal of Cancer
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Arda O.
        • Goksugur N.
        • Tuzun Y.
        Basic histological structure and functions of facial skin.
        Clin Dermatol. 2014; 32: 3-13
        • Lallas A.
        • Tschandl P.
        • Kyrgidis A.
        • Stolz W.
        • Rabinovitz H.
        • Cameron A.
        • et al.
        Dermoscopic clues to differentiate facial lentigo maligna from pigmented actinic keratosis.
        Br J Dermatol. 2016; 174: 1079-1085
        • Tschandl P.
        • Rosendahl C.
        • Kittler H.
        Dermatoscopy of flat pigmented facial lesions.
        J Eur Acad Dermatol Venereol. 2015; 29: 120-127
        • Blum A.
        • Siggs G.
        • Marghoob A.A.
        • Kreusch J.
        • Cabo H.
        • Campos-do-Carmo G.
        • et al.
        Collision skin lesions-results of a multicenter study of the International Dermoscopy Society (IDS).
        Dermatol Pract Concept. 2017; 7: 51-62
        • Lallas A.
        • Lallas K.
        • Tschandl P.
        • Kittler H.
        • Apalla Z.
        • Longo C.
        • et al.
        The dermatoscopic inverse approach significantly improves the accuracy of human readers for lentigo maligna diagnosis.
        J Am Acad Dermatol. 2020; 84: 381-389
        • Schiffner R.
        • Schiffner-Rohe J.
        • Vogt T.
        • Landthaler M.
        • Wlotzke U.
        • Cognetta A.B.
        • et al.
        Improvement of early recognition of lentigo maligna using dermatoscopy.
        J Am Acad Dermatol. 2000; 42: 25-32
        • Haenssle H.A.
        • Fink C.
        • Schneiderbauer R.
        • Toberer F.
        • Buhl T.
        • Blum A.
        • et al.
        Man against machine: diagnostic performance of a deep learning convolutional neural network for dermoscopic melanoma recognition in comparison to 58 dermatologists.
        Ann Oncol. 2018; 29: 1836-1842
        • Esteva A.
        • Kuprel B.
        • Novoa R.A.
        • Ko J.
        • Swetter S.M.
        • Blau H.M.
        • et al.
        Dermatologist-level classification of skin cancer with deep neural networks.
        Nature. 2017; 542: 115-118
        • Marchetti M.A.
        • Liopyris K.
        • Dusza S.W.
        • Codella N.C.F.
        • Gutman D.A.
        • Helba B.
        • et al.
        Computer algorithms show potential for improving dermatologists' accuracy to diagnose cutaneous melanoma: Results of the International Skin Imaging Collaboration 2017.
        J Am Acad Dermatol. 2020; 82: 622-627
        • World Medical Association
        World Medical Association Declaration of Helsinki: ethical principles for medical research involving human subjects.
        JAMA. 2013; 310: 2191-2194
        • Haenssle H.A.
        • Winkler J.K.
        • Fink C.
        • Toberer F.
        • Enk A.
        • Stolz W.
        • et al.
        Skin lesions of face and scalp - Classification by a market-approved convolutional neural network in comparison with 64 dermatologists.
        Eur J Cancer. 2021; 144: 192-199
        • Haenssle H.A.
        • Fink C.
        • Toberer F.
        • Winkler J.
        • Stolz W.
        • Deinlein T.
        • et al.
        Man against machine reloaded: performance of a market-approved convolutional neural network in classifying a broad spectrum of skin lesions in comparison with 96 dermatologists working under less artificial conditions.
        Ann Oncol. 2020; 31: 137-143
        • Winkler J.K.
        • Fink C.
        • Toberer F.
        • Enk A.
        • Deinlein T.
        • Hofmann-Wellenhof R.
        • et al.
        Association Between Surgical Skin Markings in Dermoscopic Images and Diagnostic Performance of a Deep Learning Convolutional Neural Network for Melanoma Recognition.
        JAMA Dermatol. 2019; 155: 1135-1141
        • Tschandl P.
        • Rinner C.
        • Apalla Z.
        • Argenziano G.
        • Codella N.
        • Halpern A.
        • et al.
        Human-computer collaboration for skin cancer recognition.
        Nat Med. 2020; 26: 1229-1234
        • Carli P.
        • de Giorgi V.
        • Chiarugi A.
        • Nardini P.
        • Weinstock M.A.
        • Crocetti E.
        • et al.
        Addition of dermoscopy to conventional naked-eye examination in melanoma screening: a randomized study.
        J Am Acad Dermatol. 2004; 50: 683-689
        • Peruilh-Bagolini L.
        • Apalla Z.
        • Gonzalez-Cuevas R.
        • Lallas K.
        • Papageorgiou C.
        • Bobos M.
        • et al.
        Dermoscopic predictors to discriminate between in situ and early invasive lentigo maligna melanoma: A retrospective observational study.
        J Am Acad Dermatol. 2020; 83: 269-271
        • Spyridis I.
        • Papageorgiou C.
        • Apalla Z.
        • Manoli S.M.
        • Eftychidoy P.
        • Gkentsidi T.
        • et al.
        The peculiar dermatoscopic pattern of scalp melanoma.
        J Eur Acad Dermatol Venereol. 2022; 36: 1564-1567
        • Zoutendijk J.
        • Koljenovic S.
        • Wakkee M.
        • Mooyaart A.L.
        • Nijsten T.
        • van den Bos R.R.
        Clinical findings are not helpful in detecting lentigo maligna melanoma in patients with biopsy-proven lentigo maligna.
        J Eur Acad Dermatol Venereol. 2022; 36: 2325-2330
        • Tschandl P.
        • Codella N.
        • Akay B.N.
        • Argenziano G.
        • Braun R.P.
        • Cabo H.
        • et al.
        Comparison of the accuracy of human readers versus machine-learning algorithms for pigmented skin lesion classification: an open, web-based, international, diagnostic study.
        Lancet Oncol. 2019; 20: 938-947
        • Winkler J.K.
        • Sies K.
        • Fink C.
        • Toberer F.
        • Enk A.
        • Deinlein T.
        • et al.
        Melanoma recognition by a deep learning convolutional neural network-Performance in different melanoma subtypes and localisations.
        Eur J Cancer. 2020; 127: 21-29