Advertisement

Methylation biomarkers for early cancer detection and diagnosis: Current and future perspectives

  • Joe Ibrahim
    Affiliations
    Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Prins Boudewijnlaan 43, 2650 Edegem, Belgium

    Center for Oncological Research, University of Antwerp and Antwerp University Hospital, Wilrijkstraat 10, 2650 Edegem, Belgium
    Search for articles by this author
  • Marc Peeters
    Affiliations
    Center for Oncological Research, University of Antwerp and Antwerp University Hospital, Wilrijkstraat 10, 2650 Edegem, Belgium

    Department of Medical Oncology, Antwerp University Hospital, Wilrijkstraat 10, 2650 Edegem, Belgium
    Search for articles by this author
  • Guy Van Camp
    Affiliations
    Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Prins Boudewijnlaan 43, 2650 Edegem, Belgium

    Center for Oncological Research, University of Antwerp and Antwerp University Hospital, Wilrijkstraat 10, 2650 Edegem, Belgium
    Search for articles by this author
  • Ken Op de Beeck
    Correspondence
    Corresponding author: Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Prins Boudewijnlaan 43, 2650 Edegem, Belgium.
    Affiliations
    Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Prins Boudewijnlaan 43, 2650 Edegem, Belgium

    Center for Oncological Research, University of Antwerp and Antwerp University Hospital, Wilrijkstraat 10, 2650 Edegem, Belgium
    Search for articles by this author
Published:November 22, 2022DOI:https://doi.org/10.1016/j.ejca.2022.10.015

      Highlights

      • Methylation is an important cellular marker for early cancer detection.
      • Several markers have been already proposed for different cancer types.
      • Only a handful of methylation markers have reached the clinic.
      • Technological advancements have accelerated research in the field.
      • Methylation markers will be a major step forward in cancer precision medicine.

      Abstract

      The increase in recent scientific studies on cancer biomarkers has brought great new insights into the field. Moreover, novel technological breakthroughs such as long read sequencing and microarrays have enabled high throughput profiling of many biomarkers, while advances in bioinformatic tools have made the possibility of developing highly reliable and accurate biomarkers a reality. These changes triggered renewed interest in biomarker research and provided tremendous opportunities for enhancing cancer management and improving early disease detection. DNA methylation alterations are known to accompany and contribute to carcinogenesis, making them promising biomarkers for cancer, namely due to their stability, frequency and accessibility in bodily fluids. The advent of newer minimally invasive experimental methods such as liquid biopsies provide the perfect setting for methylation-based biomarker development and application. Despite their huge potential, accurate and robust biomarkers for the conclusive diagnosis of most cancer types are still not routinely used, hence a strong need for sustained research in this field is still needed. This review provides a brief exposition of current methylation biomarkers for cancer diagnosis and early detection, including markers already in clinical use as well as various upcoming ones. It also outlines how recent big data and novel technologies will revolutionise the next generation of cancer tests in supplementing or replacing currently existing invasive techniques.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to European Journal of Cancer
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

      1. World Health Organization n.d. https://www.who.int/ [accessed 19.02.19].

        • International Agency for Research on Cancer
        Globocan. 2020; : 2020
        • Ramón y
        • Cajal S.
        • Sesé M.
        • Capdevila C.
        • Aasen T.
        • De Mattos-Arruda L.
        • Diaz-Cano S.J.
        • et al.
        Clinical implications of intratumor heterogeneity: challenges and opportunities.
        J Mol Med. 2020; 98: 161-177https://doi.org/10.1007/s00109-020-01874-2
        • Meacham C.E.
        • Morrison S.J.
        Tumour heterogeneity and cancer cell plasticity.
        Nature. 2013; 501: 328-337https://doi.org/10.1038/nature12624
        • Fisher R.
        • Pusztai L.
        • Swanton C.
        Cancer heterogeneity: implications for targeted therapeutics.
        Br J Cancer. 2013; 108: 479-485https://doi.org/10.1038/bjc.2012.581
        • Hanahan D.
        • Weinberg R.A.
        Hallmarks of cancer: the next generation.
        Cell. 2011; 144: 646-674https://doi.org/10.1016/j.cell.2011.02.013
        • Jones P.A.
        • Baylin S.B.
        The fundamental role of epigenetic events in cancer.
        Nat Rev Genet. 2002; 3: 415-428https://doi.org/10.1038/nrg816
        • Crosby D.
        • Lyons N.
        • Greenwood E.
        • Harrison S.
        • Hiom S.
        • Moffat J.
        • et al.
        A roadmap for the early detection and diagnosis of cancer.
        Lancet Oncol. 2020; 21: 1397-1399https://doi.org/10.1016/S1470-2045(20)30593-3
        • Atkinson A.J.
        • Colburn W.A.
        • DeGruttola V.G.
        • DeMets D.L.
        • Downing G.J.
        • Hoth D.F.
        • et al.
        Biomarkers and surrogate endpoints: preferred definitions and conceptual framework.
        Clin Pharmacol Ther. 2001; 69: 89-95https://doi.org/10.1067/mcp.2001.113989
        • Henry N.L.
        • Hayes D.F.
        Cancer biomarkers.
        Mol Oncol. 2012; 6: 140-146https://doi.org/10.1016/j.molonc.2012.01.010
        • Marrugo-Ramírez J.
        • Mir M.
        • Samitier J.
        Blood-based cancer biomarkers in liquid biopsy: a promising non-invasive alternative to tissue biopsy.
        Int J Mol Sci. 2018; 19: 485-495https://doi.org/10.3390/ijms19102877
        • Kilgour E.
        • Rothwell D.G.
        • Brady G.
        • Dive C.
        Liquid biopsy-based biomarkers of treatment response and resistance.
        Cancer Cell. 2020; 37: 485-495https://doi.org/10.1016/j.ccell.2020.03.012
        • McDonald B.R.
        • Contente-Cuomo T.
        • Sammut S.J.
        • Odenheimer-Bergman A.
        • Ernst B.
        • Perdigones N.
        • et al.
        Personalized circulating tumor DNA analysis to detect residual disease after neoadjuvant therapy in breast cancer.
        Sci Transl Med. 2019; 11https://doi.org/10.1126/scitranslmed.aax7392
        • Luo H.
        • Zhao Q.
        • Wei W.
        • Zheng L.
        • Yi S.
        • Li G.
        • et al.
        Circulating tumor DNA methylation profiles enable early diagnosis, prognosis prediction, and screening for colorectal cancer.
        Sci Transl Med. 2020; 12https://doi.org/10.1126/scitranslmed.aax7533
        • Osumi H.
        • Shinozaki E.
        • Yamaguchi K.
        Circulating tumor DNA as a novel biomarker optimizing chemotherapy for colorectal cancer.
        Cancers. 2020; 12: 1-11https://doi.org/10.3390/cancers12061566
        • Phallen J.
        • Sausen M.
        • Adleff V.
        • Leal A.
        • Hruban C.
        • White J.
        • et al.
        Direct detection of early-stage cancers using circulating tumor DNA.
        Sci Transl Med. 2017; 9https://doi.org/10.1126/scitranslmed.aan2415
        • Uesato Y.
        • Sasahira N.
        • Ozaka M.
        • Sasaki T.
        • Takatsuki M.
        • Zembutsu H.
        Evaluation of circulating tumor DNA as a biomarker in pancreatic cancer with liver metastasis.
        PLoS One. 2020; 15e0235623https://doi.org/10.1371/journal.pone.0235623
        • Duffy M.J.
        Circulating tumour DNA as a cancer biomarker.
        Ann Clin Biochem. 2019; 56: 42-48https://doi.org/10.1177/0004563218798401
        • Schübeler D.
        Function and information content of DNA methylation.
        Nature. 2015; 517: 321-326https://doi.org/10.1038/nature14192
        • Nakagawa H.
        • Fujita M.
        Whole genome sequencing analysis for cancer genomics and precision medicine.
        Cancer Sci. 2018; 109: 513-522https://doi.org/10.1111/cas.13505
        • Feinberg A.P.
        • Koldobskiy M.A.
        • Göndör A.
        Epigenetic modulators, modifiers and mediators in cancer aetiology and progression.
        Nat Rev Genet. 2016; 17: 284-299https://doi.org/10.1038/nrg.2016.13
        • Kondo Y.
        Epigenetic cross-talk between DNA methylation and histone modifications in human cancers.
        Yonsei Med J. 2009; 50: 455-463https://doi.org/10.3349/ymj.2009.50.4.455
        • Alvarez H.
        • Opalinska J.
        • Zhou L.
        • Sohal D.
        • Fazzari M.J.
        • Yu Y.
        • et al.
        Widespread hypomethylation occurs early and synergizes with gene amplification during esophageal carcinogenesis.
        PLoS Genet. 2011; 71001356https://doi.org/10.1371/journal.pgen.1001356
        • Yong W.S.
        • Hsu F.M.
        • Chen P.Y.
        Profiling genome-wide DNA methylation.
        Epigenet Chromatin. 2016; 9https://doi.org/10.1186/s13072-016-0075-3
        • Kulis M.
        • Esteller M.
        DNA methylation and cancer.
        Adv Genet. 2010; 70: 27-56https://doi.org/10.1016/B978-0-12-380866-0.60002-2
        • Baylin S.B.
        • Jones P.A.
        Epigenetic determinants of cancer.
        Cold Spring Harb Perspect Biol. 2016; 8: a019505https://doi.org/10.1101/cshperspect.a019505
        • Kanwal R.
        • Gupta S.
        Epigenetic modifications in cancer.
        Clin Genet. 2012; 81: 303-311https://doi.org/10.1111/j.1399-0004.2011.01809.x
        • Gaudet F.
        • Hodgson J.G.
        • Eden A.
        • Jackson-Grusby L.
        • Dausman J.
        • Gray J.W.
        • et al.
        Induction of tumors in mice by genomic hypomethylation.
        Science. 2003; 300: 489-492https://doi.org/10.1126/science.1083558
        • Ehrlich M.
        DNA methylation in cancer: too much, but also too little.
        Oncogene. 2002; 21: 5400-5413https://doi.org/10.1038/sj.onc.1205651
        • Ehrlich M.
        DNA hypomethylation in cancer cells.
        Epigenomics. 2009; 1: 239-259https://doi.org/10.2217/EPI.09.33
        • Zhong D.
        • Cen H.
        Aberrant promoter methylation profiles and association with survival in patients with hepatocellular carcinoma.
        OncoTargets Ther. 2017; 10: 2501-2509https://doi.org/10.2147/OTT.S128058
        • Upchurch G.M.
        • Haney S.L.
        • Opavsky R.
        Aberrant promoter hypomethylation in CLL: does it matter for disease development?.
        Front Oncol. 2016; 6: 182https://doi.org/10.3389/fonc.2016.00182
        • Wu L.
        • Shen Y.
        • Peng X.
        • Zhang S.
        • Wang M.
        • Xu G.
        • et al.
        Aberrant promoter methylation of cancer-relatedgenes in human breast cancer.
        Oncol Lett. 2016; 12: 5145-5155https://doi.org/10.3892/ol.2016.5351
        • Esteller M.
        Epigenetic gene silencing in cancer: the DNA hypermethylome.
        Hum Mol Genet. 2007; 16https://doi.org/10.1093/hmg/ddm018
        • Figueroa M.E.
        • Abdel-Wahab O.
        • Lu C.
        • Ward P.S.
        • Patel J.
        • Shih A.
        • et al.
        Leukemic IDH1 and IDH2 mutations result in a hypermethylation phenotype, disrupt TET2 function, and impair hematopoietic differentiation.
        Cancer Cell. 2010; 18: 553-567https://doi.org/10.1016/j.ccr.2010.11.015
        • Rasmussen K.D.
        • Jia G.
        • Johansen J.V.
        • Pedersen M.T.
        • Rapin N.
        • Bagger F.O.
        • et al.
        Loss of TET2 in hematopoietic cells leads to DNA hypermethylation of active enhancers and induction of leukemogenesis.
        Genes Dev. 2015; 29: 910-922https://doi.org/10.1101/gad.260174.115
        • Dalgliesh G.L.
        • Furge K.
        • Greenman C.
        • Chen L.
        • Bignell G.
        • Butler A.
        • et al.
        Systematic sequencing of renal carcinoma reveals inactivation of histone modifying genes.
        Nature. 2010; 463: 360-363https://doi.org/10.1038/nature08672
        • Roberti A.
        • Valdes A.F.
        • Torrecillas R.
        • Fraga M.F.
        • Fernandez A.F.
        Epigenetics in cancer therapy and nanomedicine.
        Clin Epigenetics. 2019; 11: 1-18https://doi.org/10.1186/s13148-019-0675-4
        • Hoadley K.A.
        • Yau C.
        • Hinoue T.
        • Wolf D.M.
        • Lazar A.J.
        • Drill E.
        • et al.
        Cell-of-Origin patterns dominate the molecular classification of 10,000 tumors from 33 types of cancer.
        Cell. 2018; 173: 291-304.e6https://doi.org/10.1016/j.cell.2018.03.022
        • Zhang J.
        • Huang K.
        Pan-cancer analysis of frequent DNA co-methylation patterns reveals consistent epigenetic landscape changes in multiple cancers.
        BMC Genom. 2017; 18: 1-14https://doi.org/10.1186/s12864-016-3259-0
        • Mikeska T.
        • Craig J.M.
        DNA methylation biomarkers: cancer and beyond.
        Genes. 2014; 5: 821-864https://doi.org/10.3390/genes5030821
        • Leygo C.
        • Williams M.
        • Jin H.C.
        • Chan M.W.Y.
        • Chu W.K.
        • Grusch M.
        • et al.
        DNA methylation as a noninvasive epigenetic biomarker for the detection of cancer.
        Dis Markers. 2017; 2017: 1-13https://doi.org/10.1155/2017/3726595
        • Locke W.J.
        • Guanzon D.
        • Ma C.
        • Liew Y.J.
        • Duesing K.R.
        • Fung K.Y.C.
        • et al.
        DNA methylation cancer biomarkers: translation to the clinic.
        Front Genet. 2019; 10https://doi.org/10.3389/fgene.2019.01150
        • Woodson K.
        • O'Reilly K.J.
        • Hanson J.C.
        • Nelson D.
        • Walk E.L.
        • Tangrea J.A.
        The usefulness of the detection of GSTP1 methylation in urine as a biomarker in the diagnosis of prostate cancer.
        J Urol. 2008; 179: 508-512https://doi.org/10.1016/j.juro.2007.09.073
        • Daniunaite K.
        • Berezniakovas A.
        • Jankevičius F.
        • Laurinavičius A.
        • Lazutka J.R.
        • Jarmalaite S.
        Frequent methylation of RASSF1 and RARB in urine sediments from patients with early stage prostate cancer.
        Medicina. 2011; 47: 147-153https://doi.org/10.3390/medicina47030020
        • Jatkoe T.A.
        • Karnes R.J.
        • Freedland S.J.
        • Wang Y.
        • Le A.
        • Baden J.
        A urine-based methylation signature for risk stratification within low-risk prostate cancer.
        Br J Cancer. 2015; 112: 802-808https://doi.org/10.1038/bjc.2015.7
        • Mahon K.L.
        • Qu W.
        • Devaney J.
        • Paul C.
        • Castillo L.
        • Wykes R.J.
        • et al.
        Methylated Glutathione S-transferase 1 (mGSTP1) is a potential plasma free DNA epigenetic marker of prognosis and response to chemotherapy in castrate-resistant prostate cancer.
        Br J Cancer. 2014; 111: 1802-1809https://doi.org/10.1038/bjc.2014.463
        • Brait M.
        • Banerjee M.
        • Maldonado L.
        • Ooki A.
        • Loyo M.
        • Guida E.
        • et al.
        Promoter methylation of MCAM, ERa and ERβ in serum of early stage prostate cancer patients.
        Oncotarget. 2017; 8: 15431-15440https://doi.org/10.18632/oncotarget.14873
        • Wang L.
        • Lin Y.L.
        • Li B.
        • Wang Y.Z.
        • Li W.P.
        • Ma J.G.
        Aberrant promoter methylation of the cadherin 13 gene in serum and its relationship with clinicopathological features of prostate cancer.
        J Int Med Res. 2014; 42: 1085-1092https://doi.org/10.1177/0300060514540631
        • Deng Q.K.
        • Lei Y.G.
        • Lin Y.L.
        • Ma J.G.
        • Li W.P.
        Prognostic value of protocadherin10 (PCDH10) methylation in serum of prostate cancer patients.
        Med Sci Monit. 2016; 22: 516-521https://doi.org/10.12659/MSM.897179
        • Kirby M.K.
        • Ramaker R.C.
        • Roberts B.S.
        • Lasseigne B.N.
        • Gunther D.S.
        • Burwell T.C.
        • et al.
        Genome-wide DNA methylation measurements in prostate tissues uncovers novel prostate cancer diagnostic biomarkers and transcription factor binding patterns.
        BMC Cancer. 2017; 17https://doi.org/10.1186/s12885-017-3252-2
        • Wu L.
        • Yang Y.
        • Guo X.
        • Shu X.O.
        • Cai Q.
        • Shu X.
        • et al.
        An integrative multi-omics analysis to identify candidate DNA methylation biomarkers related to prostate cancer risk.
        Nat Commun. 2020; 11: 1-11https://doi.org/10.1038/s41467-020-17673-9
        • Jarrard W.E.
        • Schultz A.
        • Etheridge T.
        • Damodaran S.
        • Allen G.O.
        • Jarrard D.
        • et al.
        Screening of urine identifies PLA2G16 as a field defect methylation biomarker for prostate cancer detection.
        PLoS One. 2019; 14https://doi.org/10.1371/journal.pone.0218950
        • O'Reilly E.
        • Tuzova A.V.
        • Walsh A.L.
        • Russell N.M.
        • O'Brien O.
        • Kelly S.
        • et al.
        epiCaPture: a urine DNA methylation test for early detection of aggressive prostate cancer.
        JCO Precis Oncol. 2019; 1–18https://doi.org/10.1200/po.18.00134
        • Waterhouse R.L.
        • Van Neste L.
        • Moses K.A.
        • Barnswell C.
        • Silberstein J.L.
        • Jalkut M.
        • et al.
        Evaluation of an epigenetic assay for predicting repeat prostate biopsy outcome in African American men.
        Urology. 2019; 128: 62-65https://doi.org/10.1016/j.urology.2018.04.001
        • Feber A.
        • Dhami P.
        • Dong L.
        • de Winter P.
        • Tan W.S.
        • Martínez-Fernández M.
        • et al.
        UroMark—a urinary biomarker assay for the detection of bladder cancer.
        Clin Epigenetics. 2017; 9: 1-10https://doi.org/10.1186/s13148-016-0303-5
        • Hoque M.O.
        • Begum S.
        • Topaloglu O.
        • Chatterjee A.
        • Rosenbaum E.
        • Van Criekinge W.
        • et al.
        Quantitation of promoter methylation of multiple genes in urine DNA and bladder cancer detection.
        J Natl Cancer Inst. 2006; 98: 996-1004https://doi.org/10.1093/jnci/djj265
        • Friedrich M.G.
        • Weisenberger D.J.
        • Cheng J.C.
        • Chandrasoma S.
        • Siegmund K.D.
        • Gonzalgo M.L.
        • et al.
        Detection of methylated apoptosis-associated genes in urine sediments of bladder cancer patients.
        Clin Cancer Res. 2004; 10: 7457-7465https://doi.org/10.1158/1078-0432.CCR-04-0930
        • Wang Y.
        • Yu Y.
        • Ye R.
        • Zhang D.
        • Li Q.
        • An D.
        • et al.
        An epigenetic biomarker combination of PCDH17 and POU4F2 detects bladder cancer accurately by methylation analyses of urine sediment DNA in Han Chinese.
        Oncotarget. 2016; 7: 2754-2764https://doi.org/10.18632/oncotarget.6666
        • Ruan W.
        • Chen X.
        • Huang M.
        • Wang H.
        • Chen J.
        • Liang Z.
        • et al.
        A urine-based DNA methylation assay to facilitate early detection and risk stratification of bladder cancer.
        Clin Epigenetics. 2021; 13: 1-14https://doi.org/10.1186/s13148-021-01073-x
        • Chen X.
        • Zhang J.
        • Ruan W.
        • Huang M.
        • Wang C.
        • Wang H.
        • et al.
        Urine DNA methylation assay enables early detection and recurrence monitoring for bladder cancer.
        J Clin Investig. 2020; 130: 6278-6289https://doi.org/10.1172/JCI139597
        • D'Andrea D.
        • Soria F.
        • Zehetmayer S.
        • Gust K.M.
        • Korn S.
        • Witjes J.A.
        • et al.
        Diagnostic accuracy, clinical utility and influence on decision-making of a methylation urine biomarker test in the surveillance of non-muscle-invasive bladder cancer.
        BJU Int. 2019; 123: 959-967https://doi.org/10.1111/bju.14673
        • Witjes J.A.
        • Morote J.
        • Cornel E.B.
        • Gakis G.
        • van Valenberg F.J.P.
        • Lozano F.
        • et al.
        Performance of the bladder EpiCheck™ methylation test for patients under surveillance for non–muscle-invasive bladder cancer: results of a multicenter, prospective, blinded clinical trial.
        Eur Urol Oncol. 2018; 1: 307-313https://doi.org/10.1016/j.euo.2018.06.011
        • Su S.F.
        • De Castro Abreu A.L.
        • Chihara Y.
        • Tsai Y.
        • Andreu-Vieyra C.
        • Daneshmand S.
        • et al.
        A panel of three markers hyper- and hypomethylated in urine sediments accurately predicts bladder cancer recurrence.
        Clin Cancer Res. 2014; 20: 1978-1989https://doi.org/10.1158/1078-0432.CCR-13-2637
        • van Kessel K.E.M.
        • Beukers W.
        • Lurkin I.
        • Ziel-van der Made A.
        • van der Keur K.A.
        • Boormans J.L.
        • et al.
        Validation of a DNA methylation-mutation urine assay to select patients with hematuria for cystoscopy.
        J Urol. 2017; 197: 590-595https://doi.org/10.1016/j.juro.2016.09.118
        • van Kessel K.E.M.
        • Van Neste L.
        • Lurkin I.
        • Zwarthoff E.C.
        • Van Criekinge W.
        Evaluation of an epigenetic profile for the detection of bladder cancer in patients with hematuria.
        J Urol. 2016; 195: 601-607https://doi.org/10.1016/j.juro.2015.08.085
        • Rex D.K.
        • Hassan C.
        • Bourke M.J.
        The colonoscopist's guide to the vocabulary of colorectal neoplasia: histology, morphology, and management.
        Gastrointest Endosc. 2017; 86: 253-263https://doi.org/10.1016/j.gie.2017.03.1546
        • Elliott G.O.
        • Johnson I.T.
        • Scarll J.
        • Dainty J.
        • Williams E.A.
        • Garg D.
        • et al.
        Quantitative profiling of CpG island methylation in human stool for colorectal cancer detection.
        Int J Colorectal Dis. 2013; 28: 35-42https://doi.org/10.1007/s00384-012-1532-5
        • Tham C.
        • Chew M.
        • Soong R.
        • Lim J.
        • Ang M.
        • Tang C.
        • et al.
        Postoperative serum methylation levels of TAC1 and SEPT9 are independent predictors of recurrence and survival of patients with colorectal cancer.
        Cancer. 2014; 120: 3131-3141https://doi.org/10.1002/cncr.28802
        • Hibi K.
        • Mizukami H.
        • Saito M.
        • Kigawa G.
        • Nemoto H.
        • Sanada Y.
        FBN2 methylation is detected in the serum of colorectal cancer patients with hepatic metastasis.
        Anticancer Res. 2012; 32: 4371-4374
        • Liu Y.
        • Chew M.H.
        • Tham C.K.
        • Tang C.L.
        • Ong S.Y.
        • Zhao Y.
        Methylation of serum SST gene is an independent prognostic marker in colorectal cancer.
        Am J Cancer Res. 2016; 6: 2098-2108
        • Hibi K.
        • Goto T.
        • Shirahata A.
        • Saito M.
        • Kigawa G.
        • Nemoto H.
        • et al.
        Detection of TFPI2 methylation in the serum of colorectal cancer patients.
        Cancer Lett. 2011; 311: 96-100https://doi.org/10.1016/j.canlet.2011.07.006
        • Herbst A.
        • Wallner M.
        • Rahmig K.
        • Stieber P.
        • Crispin A.
        • Lamerz R.
        • et al.
        Methylation of helicase-like transcription factor in serum of patients with colorectal cancer is an independent predictor of disease recurrence.
        Eur J Gastroenterol Hepatol. 2009; 21: 565-569https://doi.org/10.1097/MEG.0b013e328318ecf2
        • Ibrahim J.
        • Op de Beeck K.
        • Fransen E.
        • Croes L.
        • Beyens M.
        • Suls A.
        • et al.
        Methylation analysis of Gasdermin E shows great promise as a biomarker for colorectal cancer.
        Cancer Med. 2019; 8: 2133-2145https://doi.org/10.1002/cam4.2103
        • Li W.H.
        • Zhang H.
        • Guo Q.
        • Wu X. Di
        • Xu Z. Sen
        • Dang C.X.
        • et al.
        Detection of SNCA and FBN1 methylation in the stool as a biomarker for colorectal cancer.
        Dis Markers. 2015; 2015https://doi.org/10.1155/2015/657570
        • Glöckner S.C.
        • Dhir M.
        • Joo M.Y.
        • McGarvey K.E.
        • Van Neste L.
        • Louwagie J.
        • et al.
        Methylation of TFPI2 in stool DNA: a potential novel biomarker for the detection of colorectal cancer.
        Cancer Res. 2009; 69: 4691-4699https://doi.org/10.1158/0008-5472.CAN-08-0142
        • Chen J.
        • Sun H.
        • Tang W.
        • Zhou L.
        • Xie X.
        • Qu Z.
        • et al.
        DNA methylation biomarkers in stool for early screening of colorectal cancer.
        J Cancer. 2019; 10: 5264-5271https://doi.org/10.7150/jca.34944
        • Jensen S.Ø.
        • Øgaard N.
        • Ørntoft M.B.W.
        • Rasmussen M.H.
        • Bramsen J.B.
        • Kristensen H.
        • et al.
        Novel DNA methylation biomarkers show high sensitivity and specificity for blood-based detection of colorectal cancer – a clinical biomarker discovery and validation study.
        Clin Epigenetics. 2019; 11: 1-14https://doi.org/10.1186/s13148-019-0757-3
        • Overs A.
        • Flammang M.
        • Hervouet E.
        • Bermont L.
        • Pretet J.L.
        • Christophe B.
        • et al.
        The detection of specific hypermethylated WIF1 and NPY genes in circulating DNA by crystal digital PCR™ is a powerful new tool for colorectal cancer diagnosis and screening.
        BMC Cancer. 2021; 21: 1-12https://doi.org/10.1186/s12885-021-08816-2
        • Shirahata A.
        • Hibi K.
        Serum vimentin methylation as a potential marker for colorectal cancer.
        Anticancer Res. 2014; 34: 4121-4126
        • Zhang Y.
        • Wu Q.
        • Xu L.
        • Wang H.
        • Liu X.
        • Li S.
        • et al.
        Sensitive detection of colorectal cancer in peripheral blood by a novel methylation assay.
        Clin Epigenetics. 2021; 13: 90https://doi.org/10.1186/s13148-021-01076-8
        • Chen C.H.
        • Yan S.L.
        • Yang T.H.
        • Chen S.F.
        • Yeh Y.H.
        • Ou J.J.
        • et al.
        The relationship between the methylated septin-9 DNA blood test and stool occult blood test for diagnosing colorectal cancer in Taiwanese people.
        J Clin Lab Anal. 2017; 31https://doi.org/10.1002/jcla.22013
        • Imperiale T.F.
        • Ransohoff D.F.
        • Itzkowitz S.H.
        • Levin T.R.
        • Lavin P.
        • Lidgard G.P.
        • et al.
        Multitarget stool DNA testing for colorectal-cancer screening.
        N Engl J Med. 2014; 370: 1287-1297https://doi.org/10.1056/nejmoa1311194
        • Semaan A.
        • van Ellen A.
        • Meller S.
        • Bergheim D.
        • Branchi V.
        • Lingohr P.
        • et al.
        SEPT9 and SHOX2 DNA methylation status and its utility in the diagnosis of colonic adenomas and colorectal adenocarcinomas.
        Clin Epigenetics. 2016; 8https://doi.org/10.1186/s13148-016-0267-5
        • Cui J.W.
        • Li W.
        • Han F.J.
        • Liu Y. Di
        Screening for lung cancer using low-dose computed tomography: concerns about the application in low-risk individuals.
        Transl Lung Cancer Res. 2015; 4: 275-286https://doi.org/10.3978/j.issn.2218-6751.2015.02.05
        • Jonas D.E.
        • Reuland D.S.
        • Reddy S.M.
        • Nagle M.
        • Clark S.D.
        • Weber R.P.
        • et al.
        Screening for lung cancer with low-dose computed tomography: updated evidence report and systematic review for the US Preventive Services Task Force.
        J Am Med Assoc. 2021; 325: 971-987https://doi.org/10.1001/jama.2021.0377
        • Eggert J.A.
        • Palavanzadeh M.
        • Blanton A.
        Screening and early detection of lung cancer.
        Semin Oncol Nurs. 2017; 33: 129-140https://doi.org/10.1016/j.soncn.2017.03.001
        • Wang Y.
        • Yu Z.
        • Wang T.
        • Zhang J.
        • Hong L.
        • Chen L.
        Identification of epigenetic aberrant promoter methylation of RASSF1A in serum DNA and its clinicopathological significance in lung cancer.
        Lung Cancer. 2007; 56: 289-294https://doi.org/10.1016/j.lungcan.2006.12.007
        • Lee S.M.
        • Park J.Y.
        • Kim D.S.
        Methylation of TMEFF2 gene in tissue and serum DNA from patients with non-small cell lung cancer.
        Mol Cells. 2012; 34: 171-176https://doi.org/10.1007/s10059-012-0083-5
        • Belinsky S.A.
        • Grimes M.J.
        • Casas E.
        • Stidley C.A.
        • Franklin W.A.
        • Bocklage T.J.
        • et al.
        Predicting gene promoter methylation in non-small-cell lung cancer by evaluating sputum and serum.
        Br J Cancer. 2007; 96: 1278-1283https://doi.org/10.1038/sj.bjc.6603721
        • Leng S.
        • Wu G.
        • Klinge D.M.
        • Thomas C.L.
        • Casas E.
        • Picchi M.A.
        • et al.
        Gene methylation biomarkers in sputum as a classifier for lung cancer risk.
        Oncotarget. 2017; 863978https://doi.org/10.18632/ONCOTARGET.19255
        • Palmisano W.A.
        • Divine K.K.
        • Saccomanno G.
        • Gilliland F.D.
        • Baylin S.B.
        • Herman J.G.
        • et al.
        Predicting lung cancer by detecting aberrant promoter methylation in sputum.
        Cancer Res. 2000; 60: 5954-5958
        • Miglio U.
        • Mezzapelle R.
        • Paganotti A.
        • Veggiani C.
        • Mercalli F.
        • Mancuso G.
        • et al.
        Frequency of O6-methylguanine-DNA methyltransferase promoter methylation in cytological samples from small cell lung cancer.
        Diagn Cytopathol. 2015; 43: 947-952https://doi.org/10.1002/dc.23319
        • Vrba L.
        • Oshiro M.M.
        • Kim S.S.
        • Garland L.L.
        • Placencia C.
        • Mahadevan D.
        • et al.
        DNA methylation biomarkers discovered in silico detect cancer in liquid biopsies from non-small cell lung cancer patients.
        Epigenetics. 2020; 15: 419-430https://doi.org/10.1080/15592294.2019.1695333
        • Zang R.
        • Wang X.
        • Jin R.
        • Lei Y.
        • Huang J.
        • Liu C.
        • et al.
        Translational value of IDH1 and DNA methylation biomarkers in diagnosing lung cancers: a novel diagnostic panel of stage and histology-specificity.
        J Transl Med. 2019; 17: 1-10https://doi.org/10.1186/s12967-019-2117-7
        • Li M.
        • Zhang C.
        • Zhou L.
        • Li S.
        • Cao Y.J.
        • Wang L.
        • et al.
        Identification and validation of novel DNA methylation markers for early diagnosis of lung adenocarcinoma.
        Mol Oncol. 2020; 14: 2744-2758https://doi.org/10.1002/1878-0261.12767
        • Su Y.
        • Fang H. Bin
        • Jiang F.
        An epigenetic classifier for early stage lung cancer.
        Clin Epigenetics. 2018; 10: 1-9https://doi.org/10.1186/s13148-018-0502-3
        • Shen N.
        • Du J.
        • Zhou H.
        • Chen N.
        • Pan Y.
        • Hoheisel J.D.
        • et al.
        A diagnostic panel of DNA methylation biomarkers for lung adenocarcinoma.
        Front Oncol. 2019; 9: 1281https://doi.org/10.3389/fonc.2019.01281
        • Wei B.
        • Wu F.
        • Xing W.
        • Sun H.
        • Yan C.
        • Zhao C.
        • et al.
        A panel of DNA methylation biomarkers for detection and improving diagnostic efficiency of lung cancer.
        Sci Rep. 2021; 11: 1-10https://doi.org/10.1038/s41598-021-96242-6
        • Weiss G.
        • Schlegel A.
        • Kottwitz D.
        • König T.
        • Tetzner R.
        Validation of the SHOX2/PTGER4 DNA methylation marker panel for plasma-based discrimination between patients with malignant and nonmalignant lung disease.
        J Thorac Oncol. 2017; 12: 77-84https://doi.org/10.1016/j.jtho.2016.08.123
        • Gaga M.
        • Chorostowska-Wynimko J.
        • Horváth I.
        • Tammemagi M.C.
        • Shitrit D.
        • Eisenberg V.H.
        • et al.
        Validation of Lung EpiCheck, a novel methylation-based blood assay, for the detection of lung cancer in European and Chinese high-risk individuals.
        Eur Respir J. 2021; 57https://doi.org/10.1183/13993003.02682-2020
        • Shan M.
        • Yin H.
        • Li J.
        • Li X.
        • Wang D.
        • Su Y.
        • et al.
        Detection of aberrant methylation of a six-gene panel in serum DNA for diagnosis of breast cancer.
        Oncotarget. 2016; 7: 18485-18494https://doi.org/10.18632/oncotarget.7608
        • Yamamoto N.
        • Nakayama T.
        • Kajita M.
        • Miyake T.
        • Iwamoto T.
        • Kim S.J.
        • et al.
        Detection of aberrant promoter methylation of GSTP1, RASSF1A, and RARβ2 in serum DNA of patients with breast cancer by a newly established one-step methylation-specific PCR assay.
        Breast Cancer Res Treat. 2012; 132: 165-173https://doi.org/10.1007/s10549-011-1575-2
        • Liu L.
        • Sun L.
        • Li C.
        • Li X.
        • Zhang Y.
        • Yu Y.
        • et al.
        Quantitative detection of methylation of FHIT and BRCA1 promoters in the serum of ductal breast cancer patients.
        Bio Med Mater Eng. 2015; 26: S2217-S2222https://doi.org/10.3233/BME-151527
        • Hagrass H.A.
        • Pasha H.F.
        • Ali A.M.
        Estrogen receptor alpha (ERα) promoter methylation status in tumor and serum DNA in Egyptian breast cancer patients.
        Gene. 2014; 552: 81-86https://doi.org/10.1016/j.gene.2014.09.016
        • Croes L.
        • Beyens M.
        • Fransen E.
        • Ibrahim J.
        • Vanden Berghe W.
        • Suls A.
        • et al.
        Large-scale analysis of DFNA5 methylation reveals its potential as biomarker for breast cancer.
        Clin Epigenetics. 2018; 10https://doi.org/10.1186/s13148-018-0479-y
        • Downs B.M.
        • Mercado-Rodriguez C.
        • Cimino-Mathews A.
        • Chen C.
        • Yuan J.P.
        • Van Den Berg E.
        • et al.
        DNA methylation markers for breast cancer detection in the developing world.
        Clin Cancer Res. 2019; 25: 6357-6367https://doi.org/10.1158/1078-0432.CCR-18-3277
        • Bean G.R.
        • Bryson A.D.
        • Pilie P.G.
        • Goldenberg V.
        • Baker J.C.
        • Ibarra C.
        • et al.
        Morphologically normal-appearing mammary epithelial cells obtained from high-risk women exhibit methylation silencing of INK4a/ARF.
        Clin Cancer Res. 2007; 13: 6834-6841https://doi.org/10.1158/1078-0432.CCR-07-0407
        • Zhang M.
        • Wang Y.
        • Wang Y.
        • Jiang L.
        • Li X.
        • Gao H.
        • et al.
        Integrative analysis of DNA methylation and gene expression to determine specific diagnostic biomarkers and prognostic biomarkers of breast cancer.
        Front Cell Dev Biol. 2020; 8: 1535https://doi.org/10.3389/fcell.2020.529386
        • Zhang X.
        • Zhao D.
        • Yin Y.
        • Yang T.
        • You Z.
        • Li D.
        • et al.
        Circulating cell-free DNA-based methylation patterns for breast cancer diagnosis.
        NPJ Breast Cancer. 2021; 7https://doi.org/10.1038/s41523-021-00316-7
        • Xu Z.
        • Bolick S.C.E.
        • Deroo L.A.
        • Weinberg C.R.
        • Sandler D.P.
        • Taylor J.A.
        Epigenome-wide association study of breast cancer using prospectively collected sister study samples.
        J Natl Cancer Inst. 2013; 105: 694-700https://doi.org/10.1093/jnci/djt045
        • Anjum S.
        • Fourkala E.O.
        • Zikan M.
        • Wong A.
        • Gentry-Maharaj A.
        • Jones A.
        • et al.
        A BRCA1-mutation associated DNA methylation signature in blood cells predicts sporadic breast cancer incidence and survival.
        Genome Med. 2014; 6: 47https://doi.org/10.1186/gm567
        • Guan Z.
        • Yu H.
        • Cuk K.
        • Zhang Y.
        • Brenner H.
        Whole-blood DNA methylation markers in early detection of breast cancer: a systematic literature review.
        Cancer Epidemiol Biomark Prev. 2019; 28: 496-505https://doi.org/10.1158/1055-9965.EPI-18-0378
        • Singh A.
        • Gupta S.
        • Sachan M.
        Epigenetic biomarkers in the management of ovarian cancer: current prospectives.
        Front Cell Dev Biol. 2019; 7: 182https://doi.org/10.3389/fcell.2019.00182
        • Yoon J.H.
        • Dammann R.
        • Pfeifer G.P.
        Hypermethylation of the CpG island of the RASSF1A gene in ovarian and renal cell carcinomas.
        Int J Cancer. 2001; 94: 212-217https://doi.org/10.1002/ijc.1466
        • De Caceres II,
        • Battagli C.
        • Esteller M.
        • Herman J.G.
        • Dulaimi E.
        • Edelson M.I.
        • et al.
        Tumor cell-specific BRCA1 and RASSF1A hypermethylation in serum, plasma, and peritoneal fluid from ovarian cancer patients.
        Cancer Res. 2004; 64: 6476-6481https://doi.org/10.1158/0008-5472.CAN-04-1529
        • Melnikov A.
        • Scholtens D.
        • Godwin A.
        • Levenson V.
        Differential methylation profile of ovarian cancer in tissues and plasma.
        J Mol Diagn. 2009; 11: 60-65https://doi.org/10.2353/jmoldx.2009.080072
        • Su H.Y.
        • Lai H.C.
        • Lin Y.W.
        • Chou Y.C.
        • Liu C.Y.
        • Yu M.H.
        An epigenetic marker panel for screening and prognostic prediction of ovarian cancer.
        Int J Cancer. 2009; 124: 387-393https://doi.org/10.1002/ijc.23957
        • Hentze J.
        • Hogdall C.
        • Hogdall E.
        Methylation and ovarian cancer: can DNA methylation be of diagnostic use? (Review).
        Mol Clin Oncol. 2019; 10: 323https://doi.org/10.3892/mco.2019.1800
        • Wu T.I.
        • Huang R.L.
        • Su P.H.
        • Mao S.P.
        • Wu C.H.
        • Lai H.C.
        Ovarian cancer detection by DNA methylation in cervical scrapings.
        Clin Epigenetics. 2019; 11: 1-12https://doi.org/10.1186/s13148-019-0773-3
        • Faaborg L.
        • Jakobsen A.
        • Waldstrøm M.
        • Petersen C.B.
        • Andersen R.F.
        • Steffensen K.D.
        HOXA9-methylated DNA as a diagnostic biomarker of ovarian malignancy.
        Biomark Med. 2021; https://doi.org/10.2217/bmm-2021-0144
        • Baranova I.
        • Kovarikova H.
        • Laco J.
        • Sedlakova I.
        • Vrbacky F.
        • Kovarik D.
        • et al.
        Identification of a four-gene methylation biomarker panel in high-grade serous ovarian carcinoma.
        Clin Chem Lab Med. 2020; 58: 1332-1340https://doi.org/10.1515/cclm-2019-1319
        • Singh A.
        • Gupta S.
        • Sachan M.
        Evaluation of the diagnostic potential of candidate hypermethylated genes in epithelial ovarian cancer in North Indian population.
        Front Mol Biosci. 2021; 8: 1038https://doi.org/10.3389/fmolb.2021.719056
        • Bartlett T.E.
        • Chindera K.
        • McDermott J.
        • Breeze C.E.
        • Cooke W.R.
        • Jones A.
        • et al.
        Epigenetic reprogramming of fallopian tube fimbriae in BRCA mutation carriers defines early ovarian cancer evolution.
        Nat Commun. 2016; 7: 1-10https://doi.org/10.1038/ncomms11620
        • Doufekas K.
        • Zheng S.C.
        • Ghazali S.
        • Wong M.
        • Mohamed Y.
        • Jones A.
        • et al.
        DNA methylation signatures in vaginal fluid samples for detection of cervical and endometrial cancer.
        Int J Gynecol Cancer. 2016; 1https://doi.org/10.1097/igc.0000000000000739
        • Saslow D.
        • Solomon D.
        • Lawson H.W.
        • Killackey M.
        • Kulasingam S.L.
        • Cain J.
        • et al.
        American cancer society, American society for colposcopy and cervical pathology, and American society for clinical pathology screening guidelines for the prevention and early detection of cervical cancer.
        CA Cancer J Clin. 2012; 62: 147-172https://doi.org/10.3322/caac.21139
        • van Leeuwen R.W.
        • Oštrbenk A.
        • Poljak M.
        • van der Zee A.G.J.
        • Schuuring E.
        • Wisman G.B.A.
        DNA methylation markers as a triage test for identification of cervical lesions in a high risk human papillomavirus positive screening cohort.
        Int J Cancer. 2019; 144: 746-754https://doi.org/10.1002/ijc.31897
        • Cuschieri K.
        • Ronco G.
        • Lorincz A.
        • Smith L.
        • Ogilvie G.
        • Mirabello L.
        • et al.
        Eurogin roadmap 2017: triage strategies for the management of HPV-positive women in cervical screening programs.
        Int J Cancer. 2018; 143: 735-745https://doi.org/10.1002/ijc.31261
        • Brotherton J.M.
        • Gertig D.M.
        • May C.
        • Chappell G.
        • Saville M.
        HPV vaccine impact in australian women: ready for an HPV-based screening program.
        Med J Aust. 2016; 204 (184–184.e1)https://doi.org/10.5694/mja15.01038
        • Zhu H.
        • Zhu H.
        • Tian M.
        • Wang D.
        • He J.
        • Xu T.
        DNA methylation and hydroxymethylation in cervical cancer: diagnosis, prognosis and treatment.
        Front Genet. 2020; 11: 347https://doi.org/10.3389/fgene.2020.00347
        • Saavedra K.P.
        • Brebi P.M.
        • Roa J.C.S.
        Epigenetic alterations in preneoplastic and neoplastic lesions of the cervix.
        Clin Epigenetics. 2012; 4: 13https://doi.org/10.1186/1868-7083-4-13
        • Li C.
        • Ke J.
        • Liu J.
        • Su J.
        DNA methylation data–based molecular subtype classification related to the prognosis of patients with cervical cancer.
        J Cell Biochem. 2020; 121: 2713-2724https://doi.org/10.1002/jcb.29491
        • Verlaat W.
        • Van Leeuwen R.W.
        • Novianti P.W.
        • Schuuring E.
        • Meijer C.J.L.M.
        • Van Der Zee A.G.J.
        • et al.
        Host-cell DNA methylation patterns during high-risk HPV-induced carcinogenesis reveal a heterogeneous nature of cervical pre-cancer.
        Epigenetics. 2018; 13: 769-778https://doi.org/10.1080/15592294.2018.1507197
        • Sun Y.
        • Li S.
        • Shen K.
        • Ye S.
        • Cao D.
        • Yang J.
        DAPK1, MGMT and RARB promoter methylation as biomarkers for high-grade cervical lesions.
        Int J Clin Exp Pathol. 2015; 8: 14939-14945
        • Clarke M.A.
        • Luhn P.
        • Gage J.C.
        • Bodelon C.
        • Dunn S.T.
        • Walker J.
        • et al.
        Discovery and validation of candidate host DNA methylation markers for detection of cervical precancer and cancer.
        Int J Cancer. 2017; 141: 701-710https://doi.org/10.1002/ijc.30781
        • Kremer W.W.
        • Van Zummeren M.
        • Novianti P.W.
        • Richter K.L.
        • Verlaat W.
        • Snijders P.J.F.
        • et al.
        Detection of hypermethylated genes as markers for cervical screening in women living with HIV.
        J Int AIDS Soc. 2018; 21https://doi.org/10.1002/jia2.25165
        • Wang X. Bin
        • Cui N.H.
        • Liu X.N.
        • Ma J.F.
        • Zhu Q.H.
        • Guo S.R.
        • et al.
        Identification of DAPK1 promoter hypermethylation as a biomarker for intra-epithelial lesion and cervical cancer: a meta-analysis of published studies, TCGA, and GEO datasets.
        Front Genet. 2018; 9: 258https://doi.org/10.3389/fgene.2018.00258
        • Meršaková S.
        • Holubeková V.
        • Grendár M.
        • Višňovský J.
        • Ňachajová M.
        • Kalman M.
        • et al.
        Methylation of CADM1 and MAL together with HPV status in cytological cervical specimens serves an important role in the progression of cervical intraepithelial neoplasia.
        Oncol Lett. 2018; 16: 7166-7174https://doi.org/10.3892/ol.2018.9505
        • Rong G.
        • Zhang M.
        • Xia W.
        • Li D.
        • Miao J.
        • Wang H.
        Plasma CADM1 promoter hypermethylation and D-dimer as novel metastasis predictors of cervical cancer.
        J Obstet Gynaecol Res. 2019; 45: 1251-1259https://doi.org/10.1111/jog.13966
        • Pino M. del
        • Sierra A.
        • Marimon L.
        • Delgado C.M.
        • Rodriguez-Trujillo A.
        • Barnadas E.
        • et al.
        CADM1, MAL, and mir124 promoter methylation as biomarkers of transforming cervical intrapithelial lesions.
        Int J Mol Sci. 2019; 20: 2262https://doi.org/10.3390/ijms20092262
        • Verlaat W.
        • Snoek B.C.
        • Heideman D.A.M.
        • Wilting S.M.
        • Snijders P.J.F.
        • Novianti P.W.
        • et al.
        Identification and validation of a 3-gene methylation classifier for HPV-based cervical screening on self-samples.
        Clin Cancer Res. 2018; 24: 3456-3464https://doi.org/10.1158/1078-0432.CCR-17-3615
        • Jiao X.
        • Zhang S.
        • Jiao J.
        • Zhang T.
        • Qu W.
        • Muloye G.M.
        • et al.
        Promoter methylation of SEPT9 as a potential biomarker for early detection of cervical cancer and its overexpression predicts radioresistance.
        Clin Epigenetics. 2019; 11: 1-14https://doi.org/10.1186/s13148-019-0719-9
        • Zhao J.
        • Cao H.
        • Zhang W.
        • Fan Y.
        • Shi S.
        • Wang R.
        SOX14 hypermethylation as a tumour biomarker in cervical cancer.
        BMC Cancer. 2021; 21: 1-10https://doi.org/10.1186/s12885-021-08406-2
        • Snoek B.C.
        • Splunter AP. va.
        • Bleeker M.C.G.
        • Ruiten MC. va.
        • Heideman D.A.M.
        • Rurup W.F.
        • et al.
        Cervical cancer detection by DNA methylation analysis in urine.
        Sci Rep. 2019; 9: 1-9https://doi.org/10.1038/s41598-019-39275-2
        • De Strooper L.M.A.
        • Verhoef V.M.J.
        • Berkhof J.
        • Hesselink A.T.
        • De Bruin H.M.E.
        • Van Kemenade F.J.
        • et al.
        Validation of the FAM19A4/mir124-2 DNA methylation test for both lavage- and brush-based self-samples to detect cervical (pre)cancer in HPV-positive women.
        Gynecol Oncol. 2016; 141: 341-347https://doi.org/10.1016/j.ygyno.2016.02.012
        • Schmitz M.
        • Eichelkraut K.
        • Schmidt D.
        • Zeiser I.
        • Hilal Z.
        • Tettenborn Z.
        • et al.
        Performance of a DNA methylation marker panel using liquid-based cervical scrapes to detect cervical cancer and its precancerous stages.
        BMC Cancer. 2018; 18: 1-8https://doi.org/10.1186/s12885-018-5125-8
        • Kocsis A.
        • Takács T.
        • Jeney C.
        • Schaff Z.
        • Koiss R.
        • Járay B.
        • et al.
        Performance of a new HPV and biomarker assay in the management of hrHPV positive women: subanalysis of the ongoing multicenter TRACE clinical trial (n > 6,000) to evaluate POU4F3 methylation as a potential biomarker of cervical precancer and cancer.
        Int J Cancer. 2017; 140: 1119-1133https://doi.org/10.1002/ijc.30534
        • Van Keer S.
        • van Splunter A.P.
        • Pattyn J.
        • De Smet A.
        • Herzog S.A.
        • Van Ostade X.
        • et al.
        Triage of human papillomavirus infected women by methylation analysis in first-void urine.
        Sci Rep. 2021; 11: 7862https://doi.org/10.1038/s41598-021-87329-1
        • Wong M.C.S.
        • Huang J.L.W.
        • George J.
        • Huang J.
        • Leung C.
        • Eslam M.
        • et al.
        The changing epidemiology of liver diseases in the Asia–Pacific region.
        Nat Rev Gastroenterol Hepatol. 2019; 16: 57-73https://doi.org/10.1038/s41575-018-0055-0
        • Allemani C.
        • Matsuda T.
        • Carlo V. Di
        • Harewood R.
        • Matz M.
        • Nikšić M.
        • et al.
        Global surveillance of trends in cancer survival 2000–14 (CONCORD-3): analysis of individual records for 37 513 025 patients diagnosed with one of 18 cancers from 322 population-based registries in 71 countries.
        Lancet. 2018; 391: 1023-1075https://doi.org/10.1016/S0140-6736(17)33326-3
        • Omata M.
        • Cheng A.L.
        • Kokudo N.
        • Kudo M.
        • Lee J.M.
        • Jia J.
        • et al.
        Asia–Pacific clinical practice guidelines on the management of hepatocellular carcinoma: a 2017 update.
        Hepatol Int. 2017; 11: 317-370https://doi.org/10.1007/s12072-017-9799-9
        • Tzartzeva K.
        • Obi J.
        • Rich N.E.
        • Parikh N.D.
        • Marrero J.A.
        • Yopp A.
        • et al.
        Surveillance imaging and alpha fetoprotein for early detection of hepatocellular carcinoma in patients with cirrhosis: a meta-analysis.
        Gastroenterology. 2018; 154: 1706-1718.e1https://doi.org/10.1053/j.gastro.2018.01.064
        • Zhang Y.J.
        • Wu H.C.
        • Shen J.
        • Ahsan H.
        • Wei Y.T.
        • Yang H.I.
        • et al.
        Predicting hepatocellular carcinoma by detection of aberrant promoter methylation in serum DNA.
        Clin Cancer Res. 2007; 13: 2378-2384https://doi.org/10.1158/1078-0432.CCR-06-1900
        • Um T.H.
        • Kim H.
        • Oh B.K.
        • Kim M.S.
        • Kim K.S.
        • Jung G.
        • et al.
        Aberrant CpG island hypermethylation in dysplastic nodules and early HCC of hepatitis B virus-related human multistep hepatocarcinogenesis.
        J Hepatol. 2011; 54: 939-947https://doi.org/10.1016/j.jhep.2010.08.021
        • Baylin S.B.
        DNA methylation and gene silencing in cancer.
        Nat Clin Pract Oncol. 2005; 2: S4-S11https://doi.org/10.1038/ncponc0354
        • Huang G.
        • Krocker J.D.
        • Kirk J.L.
        • Merwat S.N.
        • Ju H.
        • Soloway R.D.
        • et al.
        Evaluation of INK4A promoter methylation using pyrosequencing and circulating cell-free DNA from patients with hepatocellular carcinoma.
        Clin Chem Lab Med. 2014; 52: 899-909https://doi.org/10.1515/cclm-2013-0885
        • Hlady R.A.
        • Zhao X.
        • Pan X.
        • Dong Yang J.
        • Ahmed F.
        • Antwi S.O.
        • et al.
        Genome-wide discovery and validation of diagnostic DNA methylation-based biomarkers for hepatocellular cancer detection in circulating cell free DNA.
        Theranostics. 2019; 9: 7239-7250https://doi.org/10.7150/thno.35573
        • Kisiel J.B.
        • Dukek B.A.
        • Kanipakam R V.S.R.
        • Ghoz H.M.
        • Yab T.C.
        • Berger C.K.
        • et al.
        Hepatocellular carcinoma detection by plasma methylated DNA: discovery, phase I pilot, and phase II clinical validation.
        Hepatology. 2019; 69: 1180-1192https://doi.org/10.1002/hep.30244
        • Cai J.
        • Chen L.
        • Zhang Z.
        • Zhang X.
        • Lu X.
        • Liu W.
        • et al.
        Genome-wide mapping of 5-hydroxymethylcytosines in circulating cell-free DNA as a non-invasive approach for early detection of hepatocellular carcinoma.
        Gut. 2019; 68: 2195-2205https://doi.org/10.1136/gutjnl-2019-318882
        • Hann H.-W.
        • Jain S.
        • Park G.
        • Steffen J.D.
        • Song W.
        • Su Y.-H.
        Detection of urine DNA markers for monitoring recurrent hepatocellular carcinoma.
        Hepatoma Res. 2017; 3: 105https://doi.org/10.20517/2394-5079.2017.15
        • Chalasani N.P.
        • Ramasubramanian T.S.
        • Bhattacharya A.
        • Olson M.C.
        • Edwards V.D.K.
        • Roberts L.R.
        • et al.
        A novel blood-based panel of methylated DNA and protein markers for detection of early-stage hepatocellular carcinoma.
        Clin Gastroenterol Hepatol. 2021; https://doi.org/10.1016/j.cgh.2020.08.065
        • Wang J.
        • Yang L.
        • Diao Y.
        • Liu J.
        • Li J.
        • Li R.
        • et al.
        Circulating tumour DNA methylation in hepatocellular carcinoma diagnosis using digital droplet PCR.
        J Int Med Res. 2021; 49https://doi.org/10.1177/0300060521992962
        • Bai Y.
        • Tong W.
        • Xie F.
        • Zhu L.
        • Wu H.
        • Shi R.
        • et al.
        DNA methylation biomarkers for diagnosis of primary liver cancer and distinguishing hepatocellular carcinoma from intrahepatic cholangiocarcinoma.
        Aging. 2021; 13: 17592-17606https://doi.org/10.18632/aging.203249
        • Luo B.
        • Ma F.
        • Liu H.
        • Hu J.
        • Rao L.
        • Liu C.
        • et al.
        Cell-free DNA methylation markers for differential diagnosis of hepatocellular carcinoma.
        BMC Med. 2022; 20: 1-12https://doi.org/10.1186/s12916-021-02201-3
        • Li B.
        • Huang H.
        • Huang R.
        • Zhang W.
        • Zhou G.
        • Wu Z.
        • et al.
        SEPT9 gene methylation as a noninvasive marker for hepatocellular carcinoma.
        Dis Markers. 2020; 2020https://doi.org/10.1155/2020/6289063
        • Oussalah A.
        • Rischer S.
        • Bensenane M.
        • Conroy G.
        • Filhine-Tresarrieu P.
        • Debard R.
        • et al.
        Plasma mSEPT9: a novel circulating cell-free DNA-based epigenetic biomarker to diagnose hepatocellular carcinoma.
        EBioMedicine. 2018; 30: 138-147https://doi.org/10.1016/j.ebiom.2018.03.029
        • Lewin J.
        • Kottwitz D.
        • Aoyama J.
        • DeVos T.
        • Garces J.
        • Hasinger O.
        • et al.
        Plasma cell free DNA methylation markers for hepatocellular carcinoma surveillance in patients with cirrhosis: a case control study.
        BMC Gastroenterol. 2021; 21: 1-8https://doi.org/10.1186/s12876-021-01714-8
        • Taryma-Leśniak O.
        • Sokolowska K.E.
        • Wojdacz T.K.
        Current status of development of methylation biomarkers for in vitro diagnostic IVD applications.
        Clin Epigenetics. 2020; 12https://doi.org/10.1186/S13148-020-00886-6
        • Weinstein J.N.
        • Collisson E.A.
        • Mills G.B.
        • Shaw K.R.M.
        • Ozenberger B.A.
        • Ellrott K.
        • et al.
        The cancer genome atlas pan-cancer analysis project.
        Nat Genet. 2013; 45: 1113-1120https://doi.org/10.1038/ng.2764
        • Witte T.
        • Plass C.
        • Gerhauser C.
        Pan-cancer patterns of DNA methylation.
        Genome Med. 2014; 6https://doi.org/10.1186/s13073-014-0066-6
        • Liu B.
        • Liu Y.
        • Pan X.
        • Li M.
        • Yang S.
        • Li S.C.
        DNA methylation markers for pan-cancer prediction by deep learning.
        Genes. 2019; 10https://doi.org/10.3390/genes10100778
        • Ibrahim J.
        • de Beeck K.O.
        • Fransen E.
        • Peeters M.
        • Van Camp G.
        The Gasdermin E gene potential as a pan-cancer biomarker, while discriminating between different tumor types.
        Cancers. 2019; 11: 1810https://doi.org/10.3390/cancers11111810
        • Ibrahim J.
        • Op de Beeck K.
        • Fransen E.
        • Peeters M.
        • Van Camp G.
        Genome-wide DNA methylation profiling and identification of potential pan-cancer and tumor-specific biomarkers.
        Mol Oncol. 2022; 16: 2432-2447https://doi.org/10.1002/1878-0261.13176
        • Fan S.
        • Tang J.
        • Li N.
        • Zhao Y.
        • Ai R.
        • Zhang K.
        • et al.
        Integrative analysis with expanded DNA methylation data reveals common key regulators and pathways in cancers.
        NPJ Genom Med. 2019; 4: 2https://doi.org/10.1038/s41525-019-0077-8
      2. The IvyGeneCORE test|IvyGene, non-invasive early cancer detection test, n.d. https://www.ivygenelabs.co.za/the-ivygenecore-test/ [accessed 30.03.22].

        • Fizazi K.
        • Greco F.A.
        • Pavlidis N.
        • Daugaard G.
        • Oien K.
        • Pentheroudakis G.
        Cancers of unknown primary site: ESMO clinical practice guidelines for diagnosis, treatment and follow-up.
        Ann Oncol. 2015; 26: vi64-vi68https://doi.org/10.1093/annonc/mdv305
        • Moran S.
        • Martínez-Cardús A.
        • Sayols S.
        • Musulén E.
        • Balañá C.
        • Estival-Gonzalez A.
        • et al.
        Epigenetic profiling to classify cancer of unknown primary: a multicentre, retrospective analysis.
        Lancet Oncol. 2016; 17: 1386-1395https://doi.org/10.1016/S1470-2045(16)30297-2
        • Klein E.A.
        • Hubbell E.
        • Maddala T.
        • Aravanis A.
        • Beausang J.F.
        • Filippova D.
        • et al.
        Development of a comprehensive cell-free DNA (cfDNA) assay for early detection of multiple tumor types: the Circulating Cell-free Genome Atlas (CCGA) study.
        J Clin Oncol. 2018; 36 (12021–12021)https://doi.org/10.1200/jco.2018.36.15_suppl.12021
        • Liu M.C.
        • Oxnard G.R.
        • Klein E.A.
        • Swanton C.
        • Seiden M.V.
        • Liu M.C.
        • et al.
        Sensitive and specific multi-cancer detection and localization using methylation signatures in cell-free DNA.
        Ann Oncol. 2020; 31: 745-759https://doi.org/10.1016/j.annonc.2020.02.011
        • Klein E.A.
        • Richards D.
        • Cohn A.
        • Tummala M.
        • Lapham R.
        • Cosgrove D.
        • et al.
        Clinical validation of a targeted methylation-based multi-cancer early detection test using an independent validation set.
        Ann Oncol. 2021; 32: 1167-1177https://doi.org/10.1016/j.annonc.2021.05.806
        • Beer T.M.
        Novel blood-based early cancer detection: diagnostics in development.
        Am J Manag Care. 2020; 26: S292-S299https://doi.org/10.37765/AJMC.2020.88533
        • Duffy M.J.
        • Diamandis E.P.
        • Crown J.
        Circulating tumor DNA (ctDNA) as a pan-cancer screening test: is it finally on the horizon?.
        Clin Chem Lab Med. 2021; 59: 1353-1361https://doi.org/10.1515/cclm-2021-0171
        • Chen X.
        • Gole J.
        • Gore A.
        • He Q.
        • Lu M.
        • Min J.
        • et al.
        Non-invasive early detection of cancer four years before conventional diagnosis using a blood test.
        Nat Commun. 2020; 11: 1-10https://doi.org/10.1038/s41467-020-17316-z
        • Shen S.Y.
        • Burgener J.M.
        • Bratman S.V.
        • De Carvalho D.D.
        Preparation of cfMeDIP-seq libraries for methylome profiling of plasma cell-free DNA.
        Nat Protoc. 2019; 14: 2749-2780https://doi.org/10.1038/s41596-019-0202-2
        • Nuzzo P.V.
        • Berchuck J.E.
        • Korthauer K.
        • Spisak S.
        • Nassar A.H.
        • Abou Alaiwi S.
        • et al.
        Detection of renal cell carcinoma using plasma and urine cell-free DNA methylomes.
        Nat Med. 2020; 26: 1041-1043https://doi.org/10.1038/s41591-020-0933-1
        • Nassiri F.
        • Chakravarthy A.
        • Feng S.
        • Shen S.Y.
        • Nejad R.
        • Zuccato J.A.
        • et al.
        Detection and discrimination of intracranial tumors using plasma cell-free DNA methylomes.
        Nat Med. 2020; 26: 1044-1047https://doi.org/10.1038/s41591-020-0932-2
        • Kang S.
        • Li Q.
        • Chen Q.
        • Zhou Y.
        • Park S.
        • Lee G.
        • et al.
        CancerLocator: non-invasive cancer diagnosis and tissue-of-origin prediction using methylation profiles of cell-free DNA.
        Genome Biol. 2017; 18: 1-12https://doi.org/10.1186/s13059-017-1191-5
        • Moss J.
        • Magenheim J.
        • Neiman D.
        • Zemmour H.
        • Loyfer N.
        • Korach A.
        • et al.
        Comprehensive human cell-type methylation atlas reveals origins of circulating cell-free DNA in health and disease.
        Nat Commun. 2018; 9: 1-12https://doi.org/10.1038/s41467-018-07466-6
        • Liu Y.
        • Siejka-Zielińska P.
        • Velikova G.
        • Bi Y.
        • Yuan F.
        • Tomkova M.
        • et al.
        Bisulfite-free direct detection of 5-methylcytosine and 5-hydroxymethylcytosine at base resolution.
        Nat Biotechnol. 2019; 37: 424-429https://doi.org/10.1038/s41587-019-0041-2
        • Liang W.
        • Zhao Y.
        • Huang W.
        • Gao Y.
        • Xu W.
        • Tao J.
        • et al.
        Non-invasive diagnosis of early-stage lung cancer using high-throughput targeted DNA methylation sequencing of circulating tumor DNA (ctDNA).
        Theranostics. 2019; 9: 2056-2070https://doi.org/10.7150/thno.28119
        • Cohen J.D.
        • Javed A.A.
        • Thoburn C.
        • Wong F.
        • Tie J.
        • Gibbs P.
        • et al.
        Combined circulating tumor DNA and protein biomarker-based liquid biopsy for the earlier detection of pancreatic cancers.
        Proc Natl Acad Sci U S A. 2017; 114: 10202-10207https://doi.org/10.1073/pnas.1704961114
        • Cohen J.D.
        • Li L.
        • Wang Y.
        • Thoburn C.
        • Afsari B.
        • Danilova L.
        • et al.
        Detection and localization of surgically resectable cancers with a multi-analyte blood test.
        Science. 2018; 359: 926-930https://doi.org/10.1126/science.aar3247
        • Su Y.
        • Fang H. Bin
        • Jiang F.
        Integrating DNA methylation and microRNA biomarkers in sputum for lung cancer detection.
        Clin Epigenetics. 2016; 8: 1-9https://doi.org/10.1186/s13148-016-0275-5
        • Cristiano S.
        • Leal A.
        • Phallen J.
        • Fiksel J.
        • Adleff V.
        • Bruhm D.C.
        • et al.
        Genome-wide cell-free DNA fragmentation in patients with cancer.
        Nature. 2019; 570: 385-389https://doi.org/10.1038/s41586-019-1272-6
        • Vaisvila R.
        • Ponnaluri V.K.K.C.
        • Sun Z.
        • Langhorst B.W.
        • Saleh L.
        • Guan S.
        • et al.
        Enzymatic methyl sequencing detects DNA methylation at single-base resolution from picograms of DNA.
        Genome Res. 2021; 31: 1280-1289https://doi.org/10.1101/gr.266551.120
        • Rand A.C.
        • Jain M.
        • Eizenga J.M.
        • Musselman-Brown A.
        • Olsen H.E.
        • Akeson M.
        • et al.
        Mapping DNA methylation with high-throughput nanopore sequencing.
        Nat Methods. 2017; 14: 411-413https://doi.org/10.1038/nmeth.4189
        • Simpson J.T.
        • Workman R.E.
        • Zuzarte P.C.
        • David M.
        • Dursi L.J.
        • Timp W.
        Detecting DNA cytosine methylation using nanopore sequencing.
        Nat Methods. 2017; 14: 407-410https://doi.org/10.1038/nmeth.4184
        • Ni P.
        • Huang N.
        • Zhang Z.
        • Wang D.P.
        • Liang F.
        • Miao Y.
        • et al.
        DeepSignal: detecting DNA methylation state from nanopore sequencing reads using deep-learning.
        Bioinformatics. 2019; 35: 4586-4595https://doi.org/10.1093/bioinformatics/btz276
        • Sina A.A.I.
        • Carrascosa L.G.
        • Liang Z.
        • Grewal Y.S.
        • Wardiana A.
        • Shiddiky M.J.A.
        • et al.
        Epigenetically reprogrammed methylation landscape drives the DNA self-assembly and serves as a universal cancer biomarker.
        Nat Commun. 2018; 9: 1-13https://doi.org/10.1038/s41467-018-07214-w
        • Pederson Susanne K.
        • Symonds Erin L.
        • Baker Rohan T.
        • Murray David H.
        • McEvoy Aidan
        • et al.
        Evaluation of an assay for methylated BCAT1 and IKZF1 in plasma for detection of colorectal neoplasia.
        BMC Cancer. 2015; 15654