The regulation of CD73 in non-small cell lung cancer


      • High expression of CD73 is found in EGFR-mutant, KRAS-mutant, and ALK positive NSCLC.
      • CD73 is regulated by ERK-Jun pathway.
      • C-Jun binds to CD73 genomic regions.



      Lung cancer is the leading cause of global cancer-related mortality. Although immune checkpoint therapy has achieved remarkable results in lung cancer, EGFR-mutant or ALK-positive non-smallcell lung cancer patients show limited benefit. Besides the low tumor mutational burden, PD-L1 expression and CD8+ tumor-infiltrating T cells, upregulation of CD73/adenosine pathway also contributes to the immune-inert microenvironment of EGFR-mutant NSCLC. However, the detailed mechanism underlying the regulation of CD73 is unclear.


      TCGA data was used to analyze the CD73 expression in cancer patients. Western blotting, qPCR, and ChIP-PCR were performed in multiple NSCLC cancer cell lines and patient derived organoids were used to explore the regulation of CD73 expression using western blotting.


      CD73 expression was highly expressed in multiple cancer types. Pharmacological or genetic inhibition of EGFR, MEK, KRAS, or ALK dramatically reduced the CD73 mRNA and protein expression in NSCLC cancer cells and patient-derived organoids with EGFR mutation, KRAS mutation or ALK-rearrangement. C-Jun overexpression-induced CD73 mRNA and protein expression. ChIP assay showed that c-Jun bind to CD73 genomic regions.


      Higher CD73 expression in NSCLC cancer cells and patient-derived organoids with EGFR mutation, KRAS mutation or ALK-rearrangement. Mechanistically, CD73 is regulated by ERK-Jun pathway, wherein c-Jun regulates CD73 expression via binding to CD73 genomic regions.


      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to European Journal of Cancer
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Blois S.
        • Tometten M.
        • Kandil J.
        • Hagen E.
        • Klapp B.F.
        • Margni R.A.
        • et al.
        Intercellular adhesion molecule-1/LFA-1 cross talk is a proximate mediator capable of disrupting immune integration and tolerance mechanism at the feto-maternal interface in murine pregnancies.
        J Immunol. 2005; 174: 1820-1829
        • Herbst R.S.
        • Morgensztern D.
        • Boshoff C.
        The biology and management of non-small cell lung cancer.
        Nature. 2018; 553: 446-454
        • Harrison P.T.
        • Vyse S.
        • Huang P.H.
        Rare epidermal growth factor receptor (EGFR) mutations in non-small cell lung cancer.
        Semin Cancer Biol. 2020; 61: 167-179
        • Riely G.J.
        • Kris M.G.
        • Rosenbaum D.
        • Marks J.
        • Li A.
        • Chitale D.A.
        • et al.
        Frequency and distinctive spectrum of KRAS mutations in never smokers with lung adenocarcinoma.
        Clin Cancer Res. 2008; 14: 5731-5734
        • Thai A.A.
        • Solomon B.J.
        • Sequist L.V.
        • Gainor J.F.
        • Heist R.S.
        Lung cancer.
        Lancet. 2021; 398: 535-554
        • Soda M.
        • Choi Y.L.
        • Enomoto M.
        • Takada S.
        • Yamashita Y.
        • Ishikawa S.
        • et al.
        Identification of the transforming EML4-ALK fusion gene in non-small-cell lung cancer.
        Nature. 2007; 448: 561-566
        • Nagahashi M.
        • Sato S.
        • Yuza K.
        • Shimada Y.
        • Ichikawa H.
        • Watanabe S.
        • et al.
        Common driver mutations and smoking history affect tumor mutation burden in lung adenocarcinoma.
        J Surg Res. 2018; 230: 181-185
        • Remon J.
        • Facchinetti F.
        • Besse B.
        The efficacy of immune checkpoint inhibitors in thoracic malignancies.
        Eur Respir Rev. 2021; 30
        • Gainor J.F.
        • Shaw A.T.
        • Sequist L.V.
        • Fu X.
        • Azzoli C.G.
        • Piotrowska Z.
        • et al.
        EGFR mutations and ALK rearrangements are associated with low response rates to PD-1 pathway blockade in non-small cell lung cancer: a retrospective analysis.
        Clin Cancer Res. 2016; 22: 4585-4593
        • Dong Z.Y.
        • Zhang J.T.
        • Liu S.Y.
        • Su J.
        • Zhang C.
        • Xie Z.
        • et al.
        EGFR mutation correlates with uninflamed phenotype and weak immunogenicity, causing impaired response to PD-1 blockade in non-small cell lung cancer.
        OncoImmunology. 2017; 6e1356145
        • Liu C.M.
        • Zheng S.F.
        • Jin R.S.
        • Wang X.F.
        • Wang F.
        • Zang R.C.
        • et al.
        The superior efficacy of anti-PD-1/PD-L1 immunotherapy in KRAS-mutant non-small cell lung cancer that correlates with an inflammatory phenotype for updates and increased immunogenicity.
        Cancer Lett. 2020; 470: 95-105
        • Passarelli A.
        • Aieta M.
        • Sgambato A.
        • Gridelli C.
        Targeting immunometabolism mediated by CD73 pathway in EGFR-mutated non-small cell lung cancer: a new hope for overcoming immune resistance.
        Front Immunol. 2020; 11: 1479
        • Thompson E.A.
        • Powell J.D.
        Inhibition of the adenosine pathway to potentiate cancer immunotherapy: potential for combinatorial approaches.
        Annu Rev Med. 2021; 72: 331-348
        • Jacobson K.A.
        • Gao Z.G.
        Adenosine receptors as therapeutic targets.
        Nat Rev Drug Discov. 2006; 5: 247-264
        • Giblett E.R.
        • Anderson J.E.
        • Cohen F.
        • Pollara B.
        • Meuwissen H.J.
        Adenosine-deaminase deficiency in two patients with severely impaired cellular immunity.
        Lancet. 1972; 2: 1067-1069
        • Giblett E.R.
        • Ammann A.J.
        • Wara D.W.
        • Sandman R.
        • Diamond L.K.
        Nucleoside-phosphorylase deficiency in a child with severely defective T-cell immunity and normal B-cell immunity.
        Lancet. 1975; 1: 1010-1013
        • Streicher K.
        • Higgs B.W.
        • Wu S.
        • Coffman K.
        • Damera G.
        • Durham N.
        • et al.
        Increased CD73 and reduced IFNG signature expression in relation to response rates to anti-PD-1(L1) therapies in EGFR-mutant NSCLC.
        J Clin Oncol. 2017; 35
        • Sadej R.
        • Spychala J.
        • Skladanowski A.C.
        Ecto-5 '-nucleotidase (eN, CD73) is coexpressed with metastasis promoting antigens in human melanoma cells.
        Nucleos Nucleot Nucl. 2006; 25: 1119-1123
        • Buisseret L.
        • Pommey S.
        • Allard B.
        • Garaud S.
        • Bergeron M.
        • Cousineau I.
        • et al.
        Clinical significance of CD73 in triple-negative breast cancer: multiplex analysis of a phase III clinical trial.
        Ann Oncol. 2018; 29: 1056-1062
        • Liu N.
        • Fang X.D.
        • Vadis Q.
        CD73 as a novel prognostic biomarker for human colorectal cancer.
        J Surg Oncol. 2012; 106: 918-919
        • Inoue Y.
        • Yoshimura K.
        • Kurabe N.
        • Kahyo T.
        • Kawase A.
        • Tanahashi M.
        • et al.
        Prognostic impact of CD73 and A2A adenosine receptor expression in non-small-cell lung cancer.
        Oncotarget. 2017; 8: 8738-8751
        • Le X.
        • Negrao M.V.
        • Reuben A.
        • Federico L.
        • Diao L.
        • McGrail D.
        • et al.
        Characterization of the immune landscape of EGFR-mutant NSCLC identifies CD73/adenosine pathway as a potential therapeutic target.
        J Thorac Oncol. 2021; 16: 583-600
        • Pauli C.
        • Hopkins B.D.
        • Prandi D.
        • Shaw R.
        • Fedrizzi T.
        • Sboner A.
        • et al.
        Personalized in vitro and in vivo cancer models to guide precision medicine.
        Cancer Discov. 2017; 7: 462-477
        • Moon Y.W.
        • Rao G.
        • Kim J.J.
        • Shim H.S.
        • Park K.S.
        • An S.S.
        • et al.
        LAMC2 enhances the metastatic potential of lung adenocarcinoma.
        Cell Death Differ. 2015; 22: 1341-1352
        • Ostrem J.M.
        • Peters U.
        • Sos M.L.
        • Wells J.A.
        • Shokat K.M.
        K-Ras(G12C) inhibitors allosterically control GTP affinity and effector interactions.
        Nature. 2013; 503: 548-551
        • Reinhardt J.
        • Landsberg J.
        • Schmid-Burgk J.L.
        • Ramis B.B.
        • Bald T.
        • Glodde N.
        • et al.
        MAPK signaling and inflammation link melanoma phenotype switching to induction of CD73 during immunotherapy.
        Cancer Res. 2017; 77: 4697-4709
        • Griesing S.
        • Liao B.C.
        • Yang J.C.
        CD73 is regulated by the EGFR-ERK signaling pathway in non-small cell lung cancer.
        Anticancer Res. 2021; 41: 1231-1242
        • Kordass T.
        • Osen W.
        • Eichmuller S.B.
        Controlling the immune suppressor: transcription factors and MicroRnAs regulating CD73/NT5E.
        Front Immunol. 2018; 9
        • Li J.
        • Wang L.
        • Chen X.
        • Li L.
        • Li Y.
        • Ping Y.
        • et al.
        CD39/CD73 upregulation on myeloid-derived suppressor cells via TGF-beta-mTOR-HIF-1 signaling in patients with non-small cell lung cancer.
        OncoImmunology. 2017; 6e1320011
        • Synnestvedt K.
        • Furuta G.T.
        • Comerford K.M.
        • Louis N.
        • Karhausen J.
        • Eltzschig H.K.
        • et al.
        Ecto-5 '-nucleotidase (CD73) regulation by hypoxia-inducible factor-1 mediates permeability changes in intestinal epithelia.
        J Clin Invest. 2002; 110: 993-1002
        • Niemela J.
        • Henttinen T.
        • Yegutkin G.G.
        • Airas L.
        • Kujari A.M.
        • Rajala P.
        • et al.
        IFN-alpha induced adenosine production on the endothelium: a mechanism mediated by CD73 (ecto-5 '-nucleotidase) up-regulation.
        J Immunol. 2004; 172: 1646-1653
        • Spychala J.
        • Kitajewski J.
        Wnt and beta-catenin signaling target the expression of ecto-5 '-nucleotidase and increase extracellular adenosine generation.
        Exp Cell Res. 2004; 296: 99-108
        • Savic V.
        • Stefanovic V.
        • Ardaillou N.
        • Ardaillou R.
        Induction of ecto-5'-nucleotidase of rat cultured mesangial cells by interleukin-1-beta and tumor necrosis factor-alpha.
        Immunology. 1990; 70: 321-326
        • Zhang B.
        CD73 promotes tumor growth and metastasis.
        OncoImmunology. 2012; 1: 67-70
        • Blay J.
        • White T.D.
        • Hoskin D.W.
        The extracellular fluid of solid carcinomas contains immunosuppressive concentrations of adenosine.
        Cancer Res. 1997; 57: 2602-2605
        • Ohta A.
        A metabolic immune checkpoint: adenosine in tumor microenvironment.
        Front Immunol. 2016; 7: 109
        • Linden J.
        Molecular approach to adenosine receptors: receptor-mediated mechanisms of tissue protection.
        Annu Rev Pharmacol Toxicol. 2001; 41: 775-787
        • Xu Z.
        • Gu C.
        • Yao X.
        • Guo W.
        • Wang H.
        • Lin T.
        • et al.
        CD73 promotes tumor metastasis by modulating RICS/RhoA signaling and EMT in gastric cancer.
        Cell Death Dis. 2020; 11: 202
        • Stagg J.
        • Divisekera U.
        • McLaughlin N.
        • Sharkey J.
        • Pommey S.
        • Denoyer D.
        • et al.
        Anti-CD73 antibody therapy inhibits breast tumor growth and metastasis.
        Proc Natl Acad Sci USA. 2010; 107: 1547-1552
        • Hay C.M.
        • Sult E.
        • Huang Q.
        • Mulgrew K.
        • Fuhrmann S.R.
        • McGlinchey K.A.
        • et al.
        Targeting CD73 in the tumor microenvironment with MEDI9447.
        OncoImmunology. 2016; 5e1208875
        • Young A.
        • Ngiow S.F.
        • Barkauskas D.S.
        • Sult E.
        • Hay C.
        • Blake S.J.
        • et al.
        Co-inhibition of CD73 and A2AR adenosine signaling improves anti-tumor immune responses.
        Cancer Cell. 2016; 30: 391-403
        • Luke J.J.
        • Powderly J.D.
        • Merchan J.R.
        • Barve M.A.
        • Hotson A.N.
        • Mobasher M.
        • et al.
        Immunobiology, preliminary safety, and efficacy of CPI-006, an anti-CD73 antibody with immune modulating activity, in a phase 1 trial in advanced cancers.
        J Clin Oncol. 2019; 37
        • Geoghegan J.C.
        • Diedrich G.
        • Lu X.
        • Rosenthal K.
        • Sachsenmeier K.F.
        • Wu H.
        • et al.
        Inhibition of CD73 AMP hydrolysis by a therapeutic antibody with a dual, non-competitive mechanism of action.
        mAbs. 2016; 8: 454-467
        • Kim D.-W.
        • Kim S.-W.
        • Camidge D.R.
        • Rizvi N.A.
        • Marrone K.A.
        • Le X.
        • et al.
        Abstract CT163: CD73 inhibitor oleclumab plus osimertinib for advanced EGFRm NSCLC: first report of a Phase 1b/2 study.
        Cancer Res. 2021; 81 (CT163): CT163