Advertisement
Original Research| Volume 169, P82-92, July 2022

Download started.

Ok

Long-term effectiveness of empiric cardio-protection in patients receiving cardiotoxic chemotherapies: A systematic review & bayesian network meta-analysis

      Highlights

      • LVEF preservation was ∼4% higher in the cardioprotective group
      • Therapy for ≥1 year was most effective: number needed to treat 21 to prevent one HF.
      • Empiric cardioprotective therapy reduces incident heart failure (HF) by nearly 70%.
      • Aldosterone antagonists were most effective in preserving LVEF
      • Dexrazoxane was most effective in preventing new onset cardiotoxic HF.

      Abstract

      Background

      Cardioprotective therapies represent an important avenue to reduce treatment-limiting cardiotoxicities in patients receiving chemotherapy. However, the optimal duration, strategy and long-term efficacy of empiric cardio-protection remains unknown.

      Methods

      Leveraging the MEDLINE/Pubmed, CENTRAL and clinicaltrials.gov databases, we identified all randomised controlled trials investigating cardioprotective therapies from inception to November 2021 (PROSPERO-ID:CRD42021265006). Cardioprotective classes included ACEIs, ARBs, Beta-blockers, dexrazoxane (DEX), statins and mineralocorticoid receptor antagonists. The primary end-point was new-onset heart failure (HF). Secondary outcomes were the mean difference in left ventricular ejection fraction (LVEF) change, hypotension and all-cause mortality. Network meta-analyses were used to assess the cardioprotective effects of each therapy to deduce the most effective therapies. Both analyses were performed using a Bayesian random effects model to estimate risk ratios (RR) and 95% credible intervals (95% CrI).

      Results

      Overall, from 726 articles, 39 trials evaluating 5931 participants (38.0 ± 19.1 years, 72.0% females) were identified. The use of any cardioprotective strategy associated with reduction in new-onset HF (RR:0.32; 95% CrI:0.19–0.55), improved LVEF (mean difference: 3.92%; 95% CrI:2.81–5.07), increased hypotension (RR:3.27; 95% CrI:1.38–9.87) and no difference in mortality. Based on control arms, the number-needed-to-treat for ‘any’ cardioprotective therapy to prevent one incident HF event was 45, including a number-needed-to-treat of 21 with ≥1 year of therapy. Dexrazoxane was most effective at HF prevention (Surface Under the Cumulative Ranking curve: 81.47%), and mineralocorticoid receptor antagonists were most effective at preserving LVEF (Surface Under the Cumulative Ranking curve: 99.22%).

      Conclusion

      Cardiotoxicity remains a challenge for patients requiring anticancer therapies. The initiation of extended duration cardioprotection reduces incident HF. Additional head-to-head trials are needed.

      Graphical abstract

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to European Journal of Cancer
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Miller K.D.
        • Nogueira L.
        • Mariotto A.B.
        • Rowland J.H.
        • Yabroff K.R.
        • Alfano C.M.
        • et al.
        Cancer treatment and survivorship statistics, 2019.
        CA Cancer J Clin. 2019; 69: 363-385https://doi.org/10.3322/caac.21565
        • Heck S.L.
        • Mecinaj A.
        • Ree A.H.
        • Geisler J.
        • Hoffmann P.
        • Schulz-Menger J.E.
        • et al.
        Prevention of cardiac dysfunction during adjuvant breast cancer therapy (PRADA) extended follow-up of a 2x2 factorial, randomized, placebo-controlled, double-blind clinical trial of candesartan and metoprolol.
        Circulation. 2021; https://doi.org/10.1161/CIRCULATIONAHA.121.054698
        • Livi L.
        • Barletta G.
        • Martella F.
        • Saieva C.
        • Desideri I.
        • Bacci C.
        • et al.
        Cardioprotective strategy for patients with nonmetastatic breast cancer who are receiving an anthracycline-based chemotherapy: a randomized clinical trial.
        JAMA Oncol. 2021; 7: 1544-1549https://doi.org/10.1001/jamaoncol.2021.3395
        • Nakayama T.
        • Oshima Y.
        • Kusumoto S.
        • Osaga S.
        • Yamamoto J.
        • Wakami K.
        • et al.
        Clinical features, risk factors, and prognosis of anthracycline-induced cardiotoxicity in patients with malignant lymphoma who received a CHOP like regimen.
        Eur Heart J. 2020; 41https://doi.org/10.1093/ehjci/ehaa946.2039
        • Jeyaprakash P.
        • Sangha S.
        • Ellenberger K.
        • Sivapathan S.
        • Pathan F.
        • Negishi K.
        Cardiotoxic effect of modern anthracycline dosing on left ventricular ejection fraction: a systematic review and meta-analysis of placebo arms from randomized controlled trials.
        J Am Heart Assoc. 2021; 10https://doi.org/10.1161/JAHA.120.018802
        • Nathan P.C.
        • Amir E.
        • Abdel-Qadir H.
        Cardiac outcomes in survivors of pediatric and adult cancers.
        Can J Cardiol. 2016; 32: 871-880https://doi.org/10.1016/j.cjca.2016.02.065
      1. (version 6.2)Higgins J.P.T. Thomas J. Chandler J. Cumpston M. Li T. Page M.J.W.V. Cochrane handbook for systematic reviews of interventions. Cochrane, 2021 (n.d.)
        • Sterne J.A.C.
        • Savović J.
        • Page M.J.
        • Elbers R.G.
        • Blencowe N.S.
        • Boutron I.
        • et al.
        RoB 2: a revised tool for assessing risk of bias in randomised trials.
        BMJ. 2019; : l4898https://doi.org/10.1136/bmj.l4898
        • Salanti G.
        • Ades A.E.
        • Ioannidis J.P.A.
        Graphical methods and numerical summaries for presenting results from multiple-treatment meta-analysis: an overview and tutorial.
        J Clin Epidemiol. 2011; 64: 163-171https://doi.org/10.1016/j.jclinepi.2010.03.016
      2. An overview of the bayesian approach.
        Bayesian Approaches to Clin Trials Heal Eval. 2003; : 49-120https://doi.org/10.1002/0470092602.ch3
        • Schünemann H.
        • Brożek J.
        • Guyatt G.
        • Oxman A.E.
        GRADE handbook for grading quality of evidence and strength of recommendations.
        (Updated October 2013) The GRADE Working Group, 2013 (Available from: guidelinedevelopment.org/handbook. n.d)
        • Team R.C.R.
        A language and environment for statistical computing.
        2021
        • Stuck A.E.
        • Rubenstein L.Z.
        • Wieland D.
        Bias in meta-analysis detected by a simple, graphical test. Asymmetry detected in funnel plot was probably due to true heterogeneity.
        BMJ. 1998; 316: 629-634https://doi.org/10.1136/bmj.316.7129.469
        • Duval S.
        • Tweedie R.
        Trim and fill: a simple funnel-plot-based method of testing and adjusting for publication bias in meta-analysis.
        Biometrics. 2000; 56: 455-463https://doi.org/10.1111/j.0006-341X.2000.00455.x
        • Speyer J.L.
        • Green M.D.
        • Kramer E.
        • Rey M.
        • Sanger J.
        • Ward C.
        • et al.
        Protective effect of the bispiperazinedione ICRF-187 against doxorubicin-induced cardiac toxicity in women with advanced breast cancer.
        N Engl J Med. 1988; 319: 745-752https://doi.org/10.1056/NEJM198809223191203
        • Elshiekh A.
        • Abuosa A.
        • Kinsara A.
        Prophylactic use of carvedilol to prevent ventricular dysfunction in patients with cancer treated with doxorubicin.
        Eur J Prev Cardiol. 2018; 25: S21-S22
        • Acar Z.
        • Kale A.
        • Turgut M.
        • Demircan S.
        • Durna K.
        • Demir S.
        • et al.
        Efficiency of atorvastatin in the protection of anthracycline-induced cardiomyopathy.
        J Am Coll Cardiol. 2011; 58: 988-989https://doi.org/10.1016/j.jacc.2011.05.025
        • Akpek M.
        • Ozdogru I.
        • Sahin O.
        • Inanc M.
        • Dogan A.
        • Yazici C.
        • et al.
        Protective effects of spironolactone against anthracycline-induced cardiomyopathy.
        Eur J Heart Fail. 2015; 17: 81-89https://doi.org/10.1002/ejhf.196
        • Asselin B.L.
        • Devidas M.
        • Chen L.
        • Franco V.I.
        • Pullen J.
        • Borowitz M.J.
        • et al.
        Cardioprotection and safety of dexrazoxane in patients treated for newly diagnosed T-cell acute lymphoblastic leukemia or advanced-stage lymphoblastic non-Hodgkin lymphoma: a report of the Children's Oncology Group randomized trial Pediatric Oncology Grou.
        J Clin Oncol. 2016; 34: 854-862https://doi.org/10.1200/JCO.2015.60.8851
        • Boekhout A.H.
        • Gietema J.A.
        • Kerklaan B.M.
        • VanWerkhoven E.D.
        • Altena R.
        • Honkoop A.
        • et al.
        Angiotensin II Receptor inhibition with candesartan to prevent trastuzumab-related cardiotoxic effects in patients with early breast cancer a randomized clinical trial.
        JAMA Oncol. 2016; 2: 1030-1037https://doi.org/10.1001/jamaoncol.2016.1726
        • Colombo A.
        • Lamantia G.
        • Colombo N.
        • Civelli M.
        • Cipolla C.M.
        • Sandri M.T.
        • et al.
        Prevention of high-dose chemotherapy-induced cardiotoxicity in high-risk patients by angiotensin-converting enzyme inhibition.
        Circulation. 2006; 114: 2474-2481https://doi.org/10.1161/CIRCULATIONAHA.106.635144
        • Avila M.S.
        • Ayub-Ferreira S.M.
        • de Barros Wanderley M.R.
        • das Dores Cruz F.
        • Gonçalves Brandão S.M.
        • Rigaud V.O.C.
        • et al.
        Carvedilol for prevention of chemotherapy-related cardiotoxicity: the CECCY trial.
        J Am Coll Cardiol. 2018; 71: 2281-2290https://doi.org/10.1016/j.jacc.2018.02.049
        • Chow E.J.
        • Aplenc R.
        • Vrooman L.M.
        • Doody D.R.
        • Huang Y.S.V.
        • Aggarwal S.
        • et al.
        Late health outcomes after dexrazoxane treatment: a report from the Children's Oncology Group.
        Cancer. 2021; : 1-9https://doi.org/10.1002/cncr.33974
        • Cochera F.
        • Dinca D.
        • Bordejevic D.A.
        • Citu I.M.
        • Mavrea A.M.
        • Andor M.
        • et al.
        Nebivolol effect on doxorubicin-induced cardiotoxicity in breast cancer.
        Cancer Manag Res. 2018; 10: 2071-2081https://doi.org/10.2147/CMAR.S166481
        • Dessì M.
        • Piras A.
        • Madeddu C.
        • Cadeddu C.
        • Deidda M.
        • Massa E.
        • et al.
        Long-term protective effects of the angiotensin receptor blocker telmisartan on epirubicin-induced inflammation, oxidative stress and myocardial dysfunction.
        Exp Ther Med. 2011; 2: 1003-1009https://doi.org/10.3892/etm.2011.305
        • Nabati M.
        • Janbabai G.
        • Faghihinia M.
        • Azizi S.
        • Borhani S.
        • Yazdani J.
        Effect of enalapril on preventing anthracycline-induced cardiomyopathy.
        Cardiovasc Toxicol. 2017; 17: 130-139https://doi.org/10.1007/s12012-016-9365-z
        • Jhorawat R.
        • Kumari S.
        • Varma S.C.
        • Suri V.
        • Malhotra P.
        • Jain S.
        • et al.
        Preventive role of carvedilol in adriamycin-induced cardiomyopathy.
        Indian J Med Res. 2016; 144: 725-729https://doi.org/10.4103/ijmr.IJMR_1323_14
        • Gupta V.
        • Kumar Singh S.
        • Agrawal V.
        • Bali Singh T.
        Role of ACE inhibitors in anthracycline-induced cardiotoxicity: a randomized, double-blind, placebo-controlled trial.
        Pediatr Blood Cancer. 2018; 65: 2-7https://doi.org/10.1002/pbc.27308
        • Kalay N.
        • Basar E.
        • Ozdogru I.
        • Er O.
        • Cetinkaya Y.
        • Dogan A.
        • et al.
        Protective effects of carvedilol against anthracycline-induced cardiomyopathy.
        J Am Coll Cardiol. 2006; 48: 2258-2262https://doi.org/10.1016/j.jacc.2006.07.052
        • Georgakopoulos P.
        • Roussou P.
        • Matsakas E.
        • Karavidas A.
        • Anagnostopoulos N.
        • Marinakis T.
        • et al.
        Cardioprotective effect of metoprolol and enalapril in doxorubicin-treated lymphoma patients: a prospective, parallel-group, randomized, controlled study with 36-month follow-up.
        Am J Hematol. 2010; 85: 894-896https://doi.org/10.1002/ajh.21840
        • Guglin M.
        • Krischer J.
        • Tamura R.
        • Bello-Matricaria L.
        • Fink A.
        • McCaskill-Stevens W.
        • et al.
        Randomized trial of lisinopril versus carvedilol to prevent trastuzumab cardiotoxicity in patients with breast cancer.
        J Am Coll Cardiol. 2019; 73: 2859-2868https://doi.org/10.1016/j.jacc.2019.03.495
        • Kaya M.G.
        • Ozkan M.
        • Gunebakmaz O.
        • Akkaya H.
        • Kaya E.G.
        • Akpek M.
        • et al.
        Protective effects of nebivolol against anthracycline-induced cardiomyopathy: a randomized control study.
        Int J Cardiol. 2013; 167: 2306-2310https://doi.org/10.1016/j.ijcard.2012.06.023
        • Elitok A.
        • Oz F.
        • Ahmet Y.
        • Bugra Z.
        • Mercanoglu F.
        • Oncul A.
        • et al.
        Effect of carvedilol on silent anthracycline-induced cardiotoxicity assessed by strain imaging: a prospective randomized controlled study with six-month follow-up.
        Cardiol J. 2014; 21: 509-515https://doi.org/10.5603/CJ.a2013.0150
        • Georgakopoulos P.
        • Kouvela M.
        • Charpidou A.
        • Kyriakidis M.
        • Mamalis N.
        • Perpinia A.
        • et al.
        The role of metoprolol and enalapril in the prevention of doxorubicin-induced cardiotoxicity in lymphoma patients.
        Anticancer Res. 2019; 39: 5703-5707https://doi.org/10.21873/anticanres.13769
        • Lee M.
        • Chung W.B.
        • eun Lee J.
        • Park C.S.
        • Park W.C.
        • Song B.J.
        • et al.
        Candesartan and carvedilol for primary prevention of subclinical cardiotoxicity in breast cancer patients without a cardiovascular risk treated with doxorubicin.
        Cancer Med. 2021; 10: 3964-3973https://doi.org/10.1002/cam4.3956
        • Asselin B.L.
        • Rifai N.
        • Dalton V.M.
        • Levy D.E.
        • Gelber R.D.
        • Silverman L.B.
        • et al.
        The effect of dexrazoxane on myocardial injury in doxorubicin-treated children with acute lymphoblastic leukemia.
        N Engl J Med. 2004; 351: 145-153https://doi.org/10.1056/NEJMoa035153
        • Vici P.
        • Di Lauro L.
        • Conti F.
        • Paoletti G.
        • Ferraironi A.
        • Sciuto R.
        • et al.
        Randomized prospective clinical trial of high-dose epirubicin and dexrazoxane in patients with advanced breast cancer and soft tissue sarcomas.
        J Clin Oncol. 1998; 16: 86-92https://doi.org/10.1200/JCO.1998.16.1.86
        • Pituskin E.
        • Mackey J.R.
        • Koshman S.
        • Haykowsky M.J.
        • Pagano J.J.
        • Chow K.
        • et al.
        Multidisciplinary approach to novel therapies in cardio-oncology research (MANTICORE 101-Breast): a randomized trial for the prevention of trastuzumab-associated cardiotoxicity.
        J Clin Oncol. 2017; 35: 870-877https://doi.org/10.1200/JCO.2016.68.7830
        • Wihandono A.
        • Azhar Y.
        • Abdurahman M.
        • Hidayat S.
        The role of lisinopril and bisoprolol to prevent anthracycline induced cardiotoxicity in locally advanced breast cancer patients.
        Asian Pac J Cancer Prev. 2021; 22: 2847-2853https://doi.org/10.31557/APJCP.2021.22.9.2847
        • Marty M.
        • Espié M.
        • Llombart A.
        • Monnier A.
        • Rapoport B.L.
        • Stahalova V.
        Multicenter randomized phase III study of the cardioprotective effect of dexrazoxane (Cardioxane®) in advanced/metastatic breast cancer patients treated with anthracycline-based chemotherapy.
        Ann Oncol. 2006; 17: 614-622https://doi.org/10.1093/annonc/mdj134
        • Bosch X.
        • Rovira M.
        • Sitges M.
        • Domènech A.
        • Ortiz-Pérez J.T.
        • De Caralt T.M.
        • et al.
        Enalapril and carvedilol for preventing chemotherapy-induced left ventricular systolic dysfunction in patients with malignant hemopathies: the OVERCOME trial (prevention of left ventricular dysfunction with enalapril and caRvedilol in patients submitted t.
        J Am Coll Cardiol. 2013; 61: 2355-2362https://doi.org/10.1016/j.jacc.2013.02.072
        • Venturini M.
        • Michelotti A.
        • Del Mastro L.
        • Gallo L.
        • Carnino F.
        • Garrone O.
        • et al.
        Multicenter randomized controlled clinical trial to evaluate cardioprotection of dexrazoxane versus no cardioprotection in women receiving epirubicin chemotherapy for advanced breast cancer.
        J Clin Oncol. 1996; 14: 3112-3120https://doi.org/10.1200/JCO.1996.14.12.3112
        • Sun F.
        • Qi X.
        • Geng C.
        • Li X.
        Dexrazoxane protects breast cancer patients with diabetes from chemotherapy-induced cardiotoxicity.
        Am J Med Sci. 2015; 349: 406-412https://doi.org/10.1097/MAJ.0000000000000432
        • Salehi R.
        • Zamani B.
        • Esfehani A.
        • Ghafari S.
        • Abasnezhad M.
        • Goldust M.
        Protective effect of carvedilol in cardiomyopathy caused by anthracyclines in patients suffering from breast cancer and lymphoma.
        Am Heart Hosp J. 2011; 9: 95-98https://doi.org/10.15420/ahhj.2011.9.2.95
        • Nabati M.
        • Janbabai G.
        • Esmailian J.
        • Yazdani J.
        Effect of rosuvastatin in preventing chemotherapy-induced cardiotoxicity in women with breast cancer: a randomized, single-blind, placebo-controlled trial.
        J Cardiovasc Pharmacol Ther. 2019; 24: 233-241https://doi.org/10.1177/1074248418821721
        • Wexler B.L.H.
        • Andrich M.P.
        • Venzon D.
        • Berg S.L.
        • Weaver-mcclure L.
        • Chen C.C.
        • et al.
        Randomized trial of the cardioprotective agent ICRF-187 in pediatric sarcoma patients treated with.
        Doxorubicin. 2021; 14: 362-372
        • Tashakori Beheshti A.
        • Mostafavi Toroghi H.
        • Hosseini G.
        • Zarifian A.
        • Homaei Shandiz F.
        • Fazlinezhad A.
        Carvedilol administration can prevent doxorubicin-induced cardiotoxicity: a double-blind randomized trial.
        Cardiol. 2016; 134: 47-53https://doi.org/10.1159/000442722
        • Słowik A.
        • Jagielski P.
        • Potocki P.
        • Streb J.
        • Ochenduszko S.
        • Wysocki P.
        • et al.
        Anthracycline-induced cardiotoxicity prevention with angiotensin-converting enzyme inhibitor ramipril in women with low-risk breast cancer: results of a prospective randomized study.
        Kardiol Pol. 2020; 78: 131-137https://doi.org/10.33963/KP.15163
        • Swain S.M.
        • Whaley F.S.
        • Gerber M.C.
        • Weisberg S.
        • York M.
        • Spicer D.
        • et al.
        Cardioprotection with dexrazoxane for doxorubicin-containing therapy in advanced breast cancer.
        J Clin Oncol. 1997; 15: 1318-1332https://doi.org/10.1200/JCO.1997.15.4.1318
        • Terada Y.
        • Nakane T.
        • Nakamae M.
        • Ohta K.
        • Yamane T.
        • Hino M.
        • et al.
        Notable effects of angiotensin II receptor blocker, valsartan, on acute cardiotoxic changes after standard chemotherapy with cyclophosphamide, doxorubicin, vincristine, and prednisolone.
        Cancer. 2005; 104: 2492-2498https://doi.org/10.1002/cncr.21478
        • Yulian E.D.
        • Siregar N.C.
        • Bajuadji
        Combination of simvastatin and FAC improves response to neoadjuvant chemotherapy in advanced local breast cancer.
        Cancer Res Treat. 2021; https://doi.org/10.4143/crt.2020.1024
        • Elshiekh A.
        • Abuosa A.
        • Kinsara A.
        • Kholeif M.
        • Ahmed A.
        • Qureshi K.
        • et al.
        Prophylactic use of carvedilol to prevent ventricular dysfunction in patients with cancer treated with doxorubicin.
        Am J Cardiol. 2018; 121: e79
        • Bansal N.
        • Adams M.J.
        • Ganatra S.
        • Colan S.D.
        • Aggarwal S.
        • Steiner R.
        • et al.
        Strategies to prevent anthracycline-induced cardiotoxicity in cancer survivors.
        Cardio-Oncology. 2019; 5: 18https://doi.org/10.1186/s40959-019-0054-5
        • Sacco G.
        • Bigioni M.
        • Evangelista S.
        • Goso C.
        • Manzini S.
        • Maggi C.A.
        Cardioprotective effects of zofenopril, a new angiotensin-converting enzyme inhibitor, on doxorubicin-induced cardiotoxicity in the rat.
        Eur J Pharmacol. 2001; 414: 71-78https://doi.org/10.1016/S0014-2999(01)00782-8
        • Akolkar G.
        • Bhullar N.
        • Bews H.
        • Shaikh B.
        • Premecz S.
        • Bordun K.A.
        • et al.
        The role of renin angiotensin system antagonists in the prevention of doxorubicin and trastuzumab induced cardiotoxicity.
        Cardiovasc Ultrasound. 2015; 13: 1-10https://doi.org/10.1186/s12947-015-0011-x
        • Riad A.
        • Bien S.
        • Westermann D.
        • Becher P.M.
        • Loya K.
        • Landmesser U.
        • et al.
        Pretreatment with statin attenuates the cardiotoxicity of doxorubicin in mice.
        Cancer Res. 2009; 69: 695-699https://doi.org/10.1158/0008-5472.CAN-08-3076
        • Sacco G.
        • Bigioni M.
        • Lopez G.
        • Evangelista S.
        • Manzini S.
        • Maggi C.A.
        ACE inhibition and protection from doxorubicin-induced cardiotoxicity in the rat.
        Vasc Pharmacol. 2009; 50: 166-170https://doi.org/10.1016/j.vph.2009.01.001
        • Kang M.
        • Kim K.I.
        • Song Y.
        • Shin W.G.
        • Oh J.M.
        Cardioprotective effect of early dexrazoxane use in anthracycline treated pediatric patients.
        J Chemother. 2012; 24: 292-296https://doi.org/10.1179/1973947812Y.0000000038
        • Lipshultz S.E.
        • Scully R.E.
        • Miller T.L.
        • Lipsitz S.R.
        • Orav E.J.
        • Neuberg D.S.
        • et al.
        Assessment of dexrazoxane as a cardioprotectant in doxorubicin-treated children with high-risk acute lymphoblastic leukaemia: long-term follow-up of a prospective, randomised, multicentre trial.
        Lancet Oncol. 2010; 11: 950-961https://doi.org/10.1016/S1470-2045%2810%2970204-7
        • Zhang S.
        • Liu X.
        • Bawa-Khalfe T.
        • Lu L.-S.
        • Lyu Y.L.
        • Liu L.F.
        • et al.
        Identification of the molecular basis of doxorubicin-induced cardiotoxicity.
        Nat Med. 2012; 18: 1639-1642https://doi.org/10.1038/nm.2919
      3. https://www.accessdata.fda.gov/scripts/cder/daf/index.cfm?event=overview.process&ApplNo=020212 n.d.

        • Henninger C.
        • Fritz G.
        Statins in anthracycline-induced cardiotoxicity: rac and Rho, and the heartbreakers.
        Cell Death Dis. 2018; 8https://doi.org/10.1038/cddis.2016.418
        • Vaduganathan M.
        • Hirji S.A.
        • Qamar A.
        • Bajaj N.
        • Gupta A.
        • Zaha V.G.
        • et al.
        Efficacy of neurohormonal therapies in preventing cardiotoxicity in patients with cancer undergoing chemotherapy.
        JACC CardioOncology. 2019; 1: 54-65https://doi.org/10.1016/j.jaccao.2019.08.006
        • Totzeck M.
        • Mincu R.I.
        • Heusch G.
        • Rassaf T.
        Heart failure from cancer therapy: can we prevent it?.
        ESC Hear Fail. 2019; 6: 856-862https://doi.org/10.1002/ehf2.12493
        • Mortensen M.B.
        • Nordestgaard B.G.
        Statin use in primary prevention of atherosclerotic cardiovascular disease according to 5 major guidelines for sensitivity, specificity, and number needed to treat.
        JAMA Cardiol. 2019; 4: 1131-1138https://doi.org/10.1001/jamacardio.2019.3665
        • Zheng S.L.
        • Roddick A.J.
        Association of aspirin use for primary prevention with cardiovascular events and bleeding events: a systematic review and meta-analysis.
        JAMA, J Am Med Assoc. 2019; 321: 277-287https://doi.org/10.1001/jama.2018.20578
        • Thavendiranathan P.
        • Negishi T.
        • Somerset E.
        • Negishi K.
        • Penicka M.
        • Lemieux J.
        • et al.
        Strain-guided management of potentially cardiotoxic cancer therapy.
        J Am Coll Cardiol. 2021; 77: 392-401https://doi.org/10.1016/j.jacc.2020.11.020

      Linked Article