Advertisement

Cracking the homologous recombination deficiency code: how to identify responders to PARP inhibitors

Published:March 10, 2022DOI:https://doi.org/10.1016/j.ejca.2022.01.037

      Highlights

      • Homologous recombination deficiency (HRD) is targetable by PARP inhibitors.
      • HRD tests are helpful to select patients who may benefit from PARP inhibitors.
      • Genomic scars assays increased the number of patients eligible for PARP inhibitors.
      • Functional tests allow a real-time assessment of homologous recombination activity.
      • Acquired resistances to PARPi have been described and need to be carefully studied.

      Abstract

      DNA double-strand breaks are the most critical DNA damage to cells, and their repair is tightly regulated to maintain cellular integrity. Some cancers exhibit homologous recombination deficiency (HRD), a faithful double-strand break repair system, making them more sensitive to poly (ADP ribose) polymerase inhibitors (PARPi). PARPi have shown substantial efficacy in BRCA-mutated ovarian cancer for several years, and their indication has gradually been extended to other tumour locations such as breast, prostate and pancreas. More recently, PARPi were demonstrated to be effective in cancers with an HRD phenotype beyond BRCA mutations. Today, a major challenge is developing tests capable of detecting the HRD phenotype of cancers (HRD tests) and predicting sensitivity to PARPi to select patients likely to benefit from this therapy. This review provides a synthesis of the existing HRD tests, divided into three main approaches to detect HRD: the investigation of the HRD causes, the study of its consequences and the evaluation of the HR activity itself.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to European Journal of Cancer
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Ciccia A.
        • Elledge S.J.
        The DNA Damage Response: making it safe to play with knives.
        Mol Cell. 2010; 40: 179-204https://doi.org/10.1016/j.molcel.2010.09.019
      1. Integrated genomic analyses of ovarian carcinoma.
        Nature. 2011; 474: 609-615https://doi.org/10.1038/nature10166
        • Lord C.J.
        • Ashworth A.
        BRCAness revisited.
        Nat Rev Cancer. 2016; 16: 110-120https://doi.org/10.1038/nrc.2015.21
        • D'Andrea A.D.
        Mechanisms of PARP inhibitor sensitivity and resistance.
        DNA Repair. 2018; 71: 172-176https://doi.org/10.1016/j.dnarep.2018.08.021
        • Moore K.
        • Colombo N.
        • Scambia G.
        • Kim B.-G.
        • Oaknin A.
        • Friedlander M.
        • et al.
        Maintenance olaparib in patients with newly diagnosed advanced ovarian cancer.
        N Engl J Med. 2018; 379: 2495-2505https://doi.org/10.1056/NEJMoa1810858
        • González-Martín A.
        • Pothuri B.
        • Vergote I.
        • DePont Christensen R.
        • Graybill W.
        • Mirza M.R.
        • et al.
        Niraparib in patients with newly diagnosed advanced ovarian cancer.
        N Engl J Med. 2019; 381: 2391-2402https://doi.org/10.1056/NEJMoa1910962
        • Ray-Coquard I.
        • Pautier P.
        • Pignata S.
        • Pérol D.
        • González-Martín A.
        • Berger R.
        • et al.
        Olaparib plus bevacizumab as first-line maintenance in ovarian cancer.
        N Engl J Med. 2019; 381: 2416-2428https://doi.org/10.1056/NEJMoa1911361
        • Lynparza
        Eur med agency.
        • Zejula
        Eur med agency.
        2018
        • Rubraca
        Eur med agency.
        2018
        • Talzenna
        Eur med agency.
        2019
        • Bryant H.E.
        • Schultz N.
        • Thomas H.D.
        • Parker K.M.
        • Flower D.
        • Lopez E.
        • et al.
        Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase.
        Nature. 2005; 434: 913-917https://doi.org/10.1038/nature03443
        • Farmer H.
        • McCabe N.
        • Lord C.J.
        • Tutt A.N.J.
        • Johnson D.A.
        • Richardson T.B.
        • et al.
        Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy.
        Nature. 2005; 434: 917-921https://doi.org/10.1038/nature03445
        • del Campo J.M.
        • Matulonis U.A.
        • Malander S.
        • Provencher D.
        • Mahner S.
        • Follana P.
        • et al.
        Niraparib maintenance therapy in patients with recurrent ovarian cancer after a partial response to the last platinum-based chemotherapy in the ENGOT-OV16/NOVA trial.
        J Clin Oncol. 2019; 37: 2968-2973https://doi.org/10.1200/JCO.18.02238
        • Swisher E.M.
        • Lin K.K.
        • Oza A.M.
        • Scott C.L.
        • Giordano H.
        • Sun J.
        • et al.
        Rucaparib in relapsed, platinum-sensitive high-grade ovarian carcinoma (ARIEL2 Part 1): an international, multicentre, open-label, phase 2 trial.
        Lancet Oncol. 2017; 18: 75-87https://doi.org/10.1016/S1470-2045(16)30559-9
        • Coleman R.L.
        • Oza A.M.
        • Lorusso D.
        • Aghajanian C.
        • Oaknin A.
        • Dean A.
        • et al.
        Rucaparib maintenance treatment for recurrent ovarian carcinoma after response to platinum therapy (ARIEL3): a randomised, double-blind, placebo-controlled, phase 3 trial.
        Lancet. 2017; 390: 1949-1961https://doi.org/10.1016/S0140-6736(17)32440-6
        • Dougherty B.A.
        • Lai Z.
        • Hodgson D.R.
        • Orr M.C.M.
        • Hawryluk M.
        • Sun J.
        • et al.
        Biological and clinical evidence for somatic mutations in BRCA1 and BRCA2 as predictive markers for olaparib response in high-grade serous ovarian cancers in the maintenance setting.
        Oncotarget. 2017; 8: 43653-43661https://doi.org/10.18632/oncotarget.17613
        • Miller R.E.
        • Leary A.
        • Scott C.L.
        • Serra V.
        • Lord C.J.
        • Bowtell D.
        • et al.
        ESMO recommendations on predictive biomarker testing for homologous recombination deficiency and PARP inhibitor benefit in ovarian cancer.
        Ann Oncol. 2020; 31: 1606-1622https://doi.org/10.1016/j.annonc.2020.08.2102
        • Pujade-Lauraine E.
        • Selle F.
        • Scambia G.
        • Asselain B.
        • Marmé F.
        • Lindemann K.
        • et al.
        LBA33 Maintenance olaparib rechallenge in patients (pts) with ovarian carcinoma (OC) previously treated with a PARP inhibitor (PARPi): phase IIIb OReO/ENGOT Ov-38 trial.
        Ann Oncol. 2021; 32: S1308-S1309https://doi.org/10.1016/j.annonc.2021.08.2110
        • Robson M.
        • Im S.-A.
        • Senkus E.
        • Xu B.
        • Domchek S.M.
        • Masuda N.
        • et al.
        Olaparib for metastatic breast cancer in patients with a germline BRCA mutation.
        N Engl J Med. 2017; 377: 523-533https://doi.org/10.1056/NEJMoa1706450
        • Litton J.K.
        • Rugo H.S.
        • Ettl J.
        • Hurvitz S.A.
        • Gonçalves A.
        • Lee K.-H.
        • et al.
        Talazoparib in patients with advanced breast cancer and a germline BRCA mutation.
        N Engl J Med. 2018; 379: 753-763https://doi.org/10.1056/NEJMoa1802905
        • Golan T.
        • Hammel P.
        • Reni M.
        • Van Cutsem E.
        • Macarulla T.
        • Hall M.J.
        • et al.
        Maintenance olaparib for germline BRCA-mutated metastatic pancreatic cancer.
        N Engl J Med. 2019; 381: 317-327https://doi.org/10.1056/NEJMoa1903387
        • Tutt A.N.J.
        • Garber J.E.
        • Kaufman B.
        • Viale G.
        • Fumagalli D.
        • Rastogi P.
        • et al.
        Adjuvant olaparib for patients with BRCA1- or BRCA2-mutated breast cancer.
        N Engl J Med. 2021; 384: 2394-2405https://doi.org/10.1056/NEJMoa2105215
      2. List of cleared or approved companion diagnostic devices (in vitro and imaging tools). FDA, 2021
        • Zakrzewski F.
        • Gieldon L.
        • Rump A.
        • Seifert M.
        • Grützmann K.
        • Krüger A.
        • et al.
        Targeted capture-based NGS is superior to multiplex PCR-based NGS for hereditary BRCA1 and BRCA2 gene analysis in FFPE tumor samples.
        BMC Cancer. 2019; 19: 396https://doi.org/10.1186/s12885-019-5584-6
        • de Bono J.
        • Mateo J.
        • Fizazi K.
        • Saad F.
        • Shore N.
        • Sandhu S.
        • et al.
        Olaparib for metastatic castration-resistant prostate cancer.
        N Engl J Med. 2020; 382: 2091-2102https://doi.org/10.1056/NEJMoa1911440
        • Stopsack K.H.
        Efficacy of PARP inhibition in metastatic castration-resistant prostate cancer is very different with non-BRCA DNA repair alterations: reconstructing prespecified endpoints for cohort B from the phase 3 PROfound trial of olaparib.
        Eur Urol. 2021; 79: 442-445https://doi.org/10.1016/j.eururo.2020.09.024
        • Tung N.M.
        • Robson M.E.
        • Ventz S.
        • Santa-Maria C.A.
        • Marcom P.K.
        • Nanda R.
        • et al.
        TBCRC 048: a phase II study of olaparib monotherapy in metastatic breast cancer patients with germline or somatic mutations in DNA damage response (DDR) pathway genes (Olaparib Expanded).
        J Clin Oncol. 2020; 38 (1002–1002. https://doi.org/10.1200/JCO.2020.38.15_suppl.1002)
        • Swisher E.M.
        • Kwan T.T.
        • Oza A.M.
        • Tinker A.V.
        • Ray-Coquard I.
        • Oaknin A.
        • et al.
        Molecular and clinical determinants of response and resistance to rucaparib for recurrent ovarian cancer treatment in ARIEL2 (Parts 1 and 2).
        Nat Commun. 2021; 12: 2487https://doi.org/10.1038/s41467-021-22582-6
        • Pujade-Lauraine E.
        • Brown J.
        • Barnicle A.
        • Rowe P.
        • Lao-Sirieix P.
        • Criscione S.
        • et al.
        Homologous recombination repair mutation gene panels (excluding BRCA) are not predictive of maintenance olaparib plus bevacizumab efficacy in the first-line PAOLA-1/ENGOT-ov25 trial.
        Gynecol Oncol. 2021; 162: S26-S27https://doi.org/10.1016/S0090-8258(21)00695-8
        • Esteller M.
        • Silva J.M.
        • Dominguez G.
        • Bonilla F.
        • Matias-Guiu X.
        • Lerma E.
        • et al.
        Promoter hypermethylation and BRCA1 inactivation in sporadic breast and ovarian tumors.
        JNCI J Natl Cancer Inst. 2000; 92: 564-569https://doi.org/10.1093/jnci/92.7.564
        • Ruscito I.
        • Dimitrova D.
        • Vasconcelos I.
        • Gellhaus K.
        • Schwachula T.
        • Bellati F.
        • et al.
        BRCA1 gene promoter methylation status in high-grade serous ovarian cancer patients – a study of the tumour Bank ovarian cancer (TOC) and ovarian cancer diagnosis consortium (OVCAD).
        Eur J Cancer. 2014; 50: 2090-2098https://doi.org/10.1016/j.ejca.2014.05.001
        • Bernards S.S.
        • Pennington K.P.
        • Harrell M.I.
        • Agnew K.J.
        • Garcia R.L.
        • Norquist B.M.
        • et al.
        Clinical characteristics and outcomes of patients with BRCA1 or RAD51C methylated versus mutated ovarian carcinoma.
        Gynecol Oncol. 2018; 148: 281-285https://doi.org/10.1016/j.ygyno.2017.12.004
        • Kalachand R.D.
        • Stordal B.
        • Madden S.
        • Chandler B.
        • Cunningham J.
        • Goode E.L.
        • et al.
        BRCA1 promoter methylation and clinical outcomes in ovarian cancer: an individual patient data meta-analysis.
        JNCI J Natl Cancer Inst. 2020; 112: 1190-1203https://doi.org/10.1093/jnci/djaa070
        • Kondrashova O.
        • Topp M.
        • Nesic K.
        • Lieschke E.
        • Ho G.-Y.
        • Harrell M.I.
        • et al.
        Methylation of all BRCA1 copies predicts response to the PARP inhibitor rucaparib in ovarian carcinoma.
        Nat Commun. 2018; 9: 3970https://doi.org/10.1038/s41467-018-05564-z
        • Toland A.E.
        • Forman A.
        • Couch F.J.
        • Culver J.O.
        • Eccles D.M.
        • Foulkes W.D.
        • et al.
        Clinical testing of BRCA1 and BRCA2 : a worldwide snapshot of technological practices.
        Npj Genomic Med. 2018; 3: 1-8https://doi.org/10.1038/s41525-018-0046-7
        • Chi K.N.
        • Barnicle A.
        • Sibilla C.
        • Lai Z.
        • Corcoran C.
        • Williams J.A.
        • et al.
        Concordance of BRCA1, BRCA2 (BRCA), and ATM mutations identified in matched tumor tissue and circulating tumor DNA (ctDNA) in men with metastatic castration-resistant prostate cancer (mCRPC) screened in the PROfound study.
        J Clin Oncol. 2021; 39 (26–26. https://doi.org/10.1200/JCO.2021.39.6_suppl.26)
        • Quigley D.
        • Alumkal J.J.
        • Wyatt A.W.
        • Kothari V.
        • Foye A.
        • Lloyd P.
        • et al.
        Analysis of circulating cell-free DNA identifies multiclonal heterogeneity of BRCA2 reversion mutations associated with resistance to PARP inhibitors.
        Cancer Discov. 2017; 7: 999-1005https://doi.org/10.1158/2159-8290.CD-17-0146
        • Abkevich V.
        • Timms K.M.
        • Hennessy B.T.
        • Potter J.
        • Carey M.S.
        • Meyer L.A.
        • et al.
        Patterns of genomic loss of heterozygosity predict homologous recombination repair defects in epithelial ovarian cancer.
        Br J Cancer. 2012; 107: 1776-1782https://doi.org/10.1038/bjc.2012.451
        • Popova T.
        • Manié E.
        • Rieunier G.
        • Caux-Moncoutier V.
        • Tirapo C.
        • Dubois T.
        • et al.
        Ploidy and large-scale genomic instability consistently identify basal-like breast carcinomas with BRCA1/2 inactivation.
        Cancer Res. 2012; 72: 5454-5462https://doi.org/10.1158/0008-5472.CAN-12-1470
        • Birkbak N.J.
        • Wang Z.C.
        • Kim J.-Y.
        • Eklund A.C.
        • Li Q.
        • Tian R.
        • et al.
        Telomeric allelic imbalance indicates defective DNA repair and sensitivity to DNA damaging agents.
        Cancer Discov. 2012; 2: 366-375https://doi.org/10.1158/2159-8290.CD-11-0206
        • Timms K.M.
        • Abkevich V.
        • Hughes E.
        • Neff C.
        • Reid J.
        • Morris B.
        • et al.
        Association of BRCA1/2defects with genomic scores predictive of DNA damage repair deficiency among breast cancer subtypes.
        Breast Cancer Res. 2014; 16: 475https://doi.org/10.1186/s13058-014-0475-x
        • Telli M.L.
        • Timms K.M.
        • Reid J.
        • Hennessy B.
        • Mills G.B.
        • Jensen K.C.
        • et al.
        Homologous recombination deficiency (HRD) score predicts response to platinum-containing neoadjuvant chemotherapy in patients with triple-negative breast cancers.
        Clin Cancer Res Off J Am Assoc Cancer Res. 2016; 22: 3764-3773https://doi.org/10.1158/1078-0432.CCR-15-2477
        • Moore K.N.
        • Secord A.A.
        • Geller M.A.
        • Miller D.S.
        • Cloven N.
        • Fleming G.F.
        • et al.
        Niraparib monotherapy for late-line treatment of ovarian cancer (QUADRA): a multicentre, open-label, single-arm, phase 2 trial.
        Lancet Oncol. 2019; 20: 636-648https://doi.org/10.1016/S1470-2045(19)30029-4
        • Banerjee S.
        • Gonzalez-Martin A.
        • Harter P.
        • Lorusso D.
        • Moore K.N.
        • Oaknin A.
        • et al.
        First-line PARP inhibitors in ovarian cancer: summary of an ESMO Open - cancer Horizons round-table discussion.
        ESMO Open. 2020; 5 (e001110. https://doi.org/10.1136/esmoopen-2020-001110)
        • Hodgson D.R.
        • Dougherty B.A.
        • Lai Z.
        • Fielding A.
        • Grinsted L.
        • Spencer S.
        • et al.
        Candidate biomarkers of PARP inhibitor sensitivity in ovarian cancer beyond the BRCA genes.
        Br J Cancer. 2018; 119: 1401-1409https://doi.org/10.1038/s41416-018-0274-8
        • Tobalina L.
        • Armenia J.
        • Irving E.
        • O'Connor M.J.
        • Forment J.V.
        A meta-analysis of reversion mutations in BRCA genes identifies signatures of DNA end-joining repair mechanisms driving therapy resistance.
        Ann Oncol. 2021; 32: 103-112https://doi.org/10.1016/j.annonc.2020.10.470
        • Rose M.
        • Burgess J.T.
        • O'Byrne K.
        • Richard D.J.
        • Bolderson E.
        PARP inhibitors: clinical relevance, mechanisms of action and tumor resistance.
        Front Cell Dev Biol. 2020; 8: 564601https://doi.org/10.3389/fcell.2020.564601
        • Watkins J.A.
        • Irshad S.
        • Grigoriadis A.
        • Tutt A.N.
        Genomic scars as biomarkers of homologous recombination deficiency and drug response in breast and ovarian cancers.
        Breast Cancer Res. 2014; 16: 211https://doi.org/10.1186/bcr3670
        • Alexandrov L.B.
        • Nik-Zainal S.
        • Wedge D.C.
        • Aparicio S.A.J.R.
        • Behjati S.
        • Biankin A.V.
        • et al.
        Signatures of mutational processes in human cancer.
        Nature. 2013; 500: 415-421https://doi.org/10.1038/nature12477
      3. COSMIC | SBS - mutational Signatures n.d.
        • Gulhan D.C.
        • Lee J.J.-K.
        • Melloni G.E.M.
        • Cortés-Ciriano I.
        • Park P.J.
        Detecting the mutational signature of homologous recombination deficiency in clinical samples.
        Nat Genet. 2019; 51: 912-919https://doi.org/10.1038/s41588-019-0390-2
        • Davies H.
        • Glodzik D.
        • Morganella S.
        • Yates L.R.
        • Staaf J.
        • Zou X.
        • et al.
        HRDetect is a predictor of BRCA1 and BRCA2 deficiency based on mutational signatures.
        Nat Med. 2017; 23: 517-525https://doi.org/10.1038/nm.4292
        • Chopra N.
        • Tovey H.
        • Pearson A.
        • Cutts R.
        • Toms C.
        • Proszek P.
        • et al.
        Homologous recombination DNA repair deficiency and PARP inhibition activity in primary triple negative breast cancer.
        Nat Commun. 2020; 11: 1-12https://doi.org/10.1038/s41467-020-16142-7
        • Peng G.
        • Lin C.C.-J.
        • Mo W.
        • Dai H.
        • Park Y.-Y.
        • Kim S.-M.
        • et al.
        Genome-wide transcriptome profiling of homologous recombination DNA repair.
        Nat Commun. 2014; 5: 3361https://doi.org/10.1038/ncomms4361
        • Konstantinopoulos P.A.
        • Spentzos D.
        • Karlan B.Y.
        • Taniguchi T.
        • Fountzilas E.
        • Francoeur N.
        • et al.
        Gene expression profile of BRCAness that correlates with responsiveness to chemotherapy and with outcome in patients with epithelial ovarian cancer.
        J Clin Oncol. 2010; 28: 3555-3561https://doi.org/10.1200/JCO.2009.27.5719
        • Ladan M.M.
        • van Gent D.C.
        • Jager A.
        Homologous recombination deficiency testing for BRCA-like tumors: the road to clinical validation.
        Cancers. 2021; 13: 1004https://doi.org/10.3390/cancers13051004
        • Graeser M.
        • McCarthy A.
        • Lord C.J.
        • Savage K.
        • Hills M.
        • Salter J.
        • et al.
        A marker of homologous recombination predicts pathological complete response to neoadjuvant chemotherapy in primary breast cancer.
        Clin Cancer Res Off J Am Assoc Cancer Res. 2010; 16: 6159-6168https://doi.org/10.1158/1078-0432.CCR-10-1027
        • Naipal K.A.T.
        • Verkaik N.S.
        • Ameziane N.
        • van Deurzen C.H.M.
        • Brugge P ter
        • Meijers M.
        • et al.
        Functional ex vivo assay to select homologous recombination–deficient breast tumors for PARP inhibitor treatment.
        Clin Cancer Res. 2014; 20: 4816-4826https://doi.org/10.1158/1078-0432.CCR-14-0571
        • van Wijk L.M.
        • Vermeulen S.
        • Meijers M.
        • van Diest M.F.
        • ter Haar N.T.
        • de Jonge M.M.
        • et al.
        The RECAP test rapidly and reliably identifies homologous recombination-deficient ovarian carcinomas.
        Cancers. 2020; 12: 2805https://doi.org/10.3390/cancers12102805
        • Castroviejo-Bermejo M.
        • Cruz C.
        • Llop-Guevara A.
        • Gutiérrez-Enríquez S.
        • Ducy M.
        • Ibrahim Y.H.
        • et al.
        A RAD51 assay feasible in routine tumor samples calls PARP inhibitor response beyond BRCA mutation.
        EMBO Mol Med. 2018; 10 (e9172. https://doi.org/10.15252/emmm.201809172)
        • Cruz C.
        • Castroviejo-Bermejo M.
        • Gutiérrez-Enríquez S.
        • Llop-Guevara A.
        • Ibrahim Y.H.
        • Gris-Oliver A.
        • et al.
        RAD51 foci as a functional biomarker of homologous recombination repair and PARP inhibitor resistance in germline BRCA-mutated breast cancer.
        Ann Oncol. 2018; 29: 1203-1210https://doi.org/10.1093/annonc/mdy099
        • Blanc-Durand F.
        • Yaniz E.
        • Genestie C.
        • Rouleau E.
        • Berton D.
        • Lortholary A.
        • et al.
        Evaluation of a RAD51 functional assay in advanced ovarian cancer, a GINECO/GINEGEPS study.
        J Clin Oncol. 2021; 39 (5513–5513. https://doi.org/10.1200/JCO.2021.39.15_suppl.5513)
        • Hoppe M.M.
        • Sundar R.
        • Tan D.S.P.
        • Jeyasekharan A.D.
        Biomarkers for homologous recombination deficiency in cancer.
        JNCI J Natl Cancer Inst. 2018; 110: 704-713https://doi.org/10.1093/jnci/djy085
        • Fuh K.
        • Mullen M.
        • Blachut B.
        • Stover E.
        • Konstantinopoulos P.
        • Liu J.
        • et al.
        Homologous recombination deficiency real-time clinical assays, ready or not?.
        Gynecol Oncol. 2020; 159: 877-886https://doi.org/10.1016/j.ygyno.2020.08.035
        • Quinet A.
        • Carvajal-Maldonado D.
        • Lemacon D.
        • Vindigni A.
        DNA fiber analysis: mind the gap.
        Methods Enzymol. 2017; 591: 55-82https://doi.org/10.1016/bs.mie.2017.03.019
        • Liptay M.
        • Barbosa J.S.
        • Rottenberg S.
        Replication fork remodeling and therapy escape in DNA damage response-deficient cancers.
        Front Oncol. 2020; 10: 670https://doi.org/10.3389/fonc.2020.00670
        • Hill S.J.
        • Decker B.
        • Roberts E.A.
        • Horowitz N.S.
        • Muto M.G.
        • Worley M.J.
        • et al.
        Prediction of DNA repair inhibitor response in short-term patient-derived ovarian cancer organoids.
        Cancer Discov. 2018; 8: 1404-1421https://doi.org/10.1158/2159-8290.CD-18-0474