Advertisement
Current Perspective| Volume 153, P64-71, August 2021

Download started.

Ok

Integration of quantitative imaging biomarkers in clinical trials for MR-guided radiotherapy: Conceptual guidance for multicentre studies from the MR-Linac Consortium Imaging Biomarker Working Group

      Highlights

      • Daily imaging is feasible on integrated MRI-guided radiotherapy (MRIgRT) systems.
      • This will advance quantitative imaging biomarker (QIB) research in oncology.
      • QIBs have the potential to personalise radiotherapy treatment.
      • This paper presents a roadmap towards clinical use of QIBs on MRIgRT systems.
      • Technical validation should be integrated in clinical trials on MRIgRT systems.

      Abstract

      Quantitative imaging biomarkers (QIBs) derived from MRI techniques have the potential to be used for the personalised treatment of cancer patients. However, large-scale data are missing to validate their added value in clinical practice. Integrated MRI-guided radiotherapy (MRIgRT) systems, such as hybrid MRI-linear accelerators, have the unique advantage that MR images can be acquired during every treatment session. This means that high-frequency imaging of QIBs becomes feasible with reduced patient burden, logistical challenges, and costs compared to extra scan sessions. A wealth of valuable data will be collected before and during treatment, creating new opportunities to advance QIB research at large. The aim of this paper is to present a roadmap towards the clinical use of QIBs on MRIgRT systems. The most important need is to gather and understand how the QIBs collected during MRIgRT correlate with clinical outcomes. As the integrated MRI scanner differs from traditional MRI scanners, technical validation is an important aspect of this roadmap. We propose to integrate technical validation with clinical trials by the addition of a quality assurance procedure at the start of a trial, the acquisition of in vivo test-retest data to assess the repeatability, as well as a comparison between QIBs from MRIgRT systems and diagnostic MRI systems to assess the reproducibility. These data can be collected with limited extra time for the patient. With integration of technical validation in clinical trials, the results of these trials derived on MRIgRT systems will also be applicable for measurements on other MRI systems.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to European Journal of Cancer
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • O'Connor J.P.B.
        • Aboagy E.O.
        • Adams J.E.
        • Aerts H.J.W.L.
        • Barrington S.F.
        • Beer A.J.
        • et al.
        Imaging biomarker roadmap for cancer studies.
        Nat Rev Clin Oncol. 2016; 14: 169-186https://doi.org/10.1038/nrclinonc.2016.162
        • Hockings P.
        • Saeed N.
        • Simms R.
        • Smith N.
        • Hall M.G.
        • Waterton J.C.
        • et al.
        MRI biomarkers.
        2020https://doi.org/10.1016/B978-0-12-817057-1.00002-0 (liii–lxxxvi)
        • Keenan K.E.
        • Biller J.R.
        • Delfino J.G.
        • Boss M.A.
        • Does M.D.
        • Evelhoch J.L.
        • et al.
        Recommendations towards standards for quantitative MRI (qMRI) and outstanding needs.
        J Magn Reson Imaging. 2019; 49: 26-39https://doi.org/10.1002/jmri.26598
        • Das I.J.
        • McGee K.P.
        • Tyagi N.
        • Wang H.
        Role and future of MRI in radiation oncology.
        Br J Radiol. 2019; 92: 20180505https://doi.org/10.1259/bjr.20180505
        • Winkel D.
        • Bol G.H.
        • Kroon P.S.
        • van Asselen B.
        • Hackett S.S.
        • Werensteijn-Honingh A.M.
        • et al.
        Adaptive radiotherapy: the Elekta unity MR-linac concept.
        Clin Transl Radiat Oncol. 2019; 18: 54-59https://doi.org/10.1016/j.ctro.2019.04.001
        • Hall W.A.
        • Paulson E.S.
        • van der Heide U.A.
        • Fuller C.D.
        • Raaymakers B.W.
        • Lagendijk J.J.W.
        • et al.
        The transformation of radiation oncology using real-time magnetic resonance guidance: a review.
        Eur J Cancer. 2019; 122: 42-52https://doi.org/10.1016/j.ejca.2019.07.021
        • Gurney-Champion O.J.
        • Mahmood F.
        • van Schie M.
        • Julian R.
        • George B.
        • Philippens M.E.P.
        • et al.
        Quantitative imaging for radiotherapy purposes.
        Radiother Oncol. 2020; 146: 66-75https://doi.org/10.1016/j.radonc.2020.01.026
        • Zhou Q.
        • Zeng F.
        • Ding Y.
        • Fuller C.D.
        • Wang J.
        Meta-analysis of diffusion-weighted imaging for predicting locoregional failure of chemoradiotherapy in patients with head and neck squamous cell carcinoma.
        Mol Clin Oncol. 2017; : 197-203https://doi.org/10.3892/mco.2017.1504
        • Schurink N.W.
        • Lambregts D.M.J.
        • Beets-Tan R.G.H.
        Diffusion-weighted imaging in rectal cancer: current applications and future perspectives.
        Br J Radiol. 2019; 92: 20180655https://doi.org/10.1259/bjr.20180655
        • Martens R.M.
        • Noij D.P.
        • Ali M.
        • Koopman T.
        • Marcus J.T.
        • Vergeer M.R.
        • et al.
        Functional imaging early during (chemo)radiotherapy for response prediction in head and neck squamous cell carcinoma; a systematic review.
        Oral Oncol. 2019; 88: 75-83https://doi.org/10.1016/j.oraloncology.2018.11.005
        • Leibfarth S.
        • Winter R.M.
        • Lyng H.
        • Zips D.
        • Thorwarth D.
        Potentials and challenges of diffusion-weighted magnetic resonance imaging in radiotherapy.
        Clin Transl Radiat Oncol. 2018; 13: 29-37https://doi.org/10.1016/j.ctro.2018.09.002
        • Bentzen S.M.
        • Gregoire V.
        Molecular imaging-based dose painting: a novel paradigm for radiation therapy prescription.
        Semin Radiat Oncol. 2011; 21: 101-110https://doi.org/10.1016/j.semradonc.2010.10.001
        • Chung S.R.
        • Choi Y.J.
        • Suh C.H.
        • Lee J.H.
        • Baek J.H.
        Diffusion-weighted magnetic resonance imaging for predicting response to chemoradiation therapy for head and neck squamous cell carcinoma: a systematic review.
        Korean J Radiol. 2019; 20: 649-661https://doi.org/10.3348/kjr.2018.0446
        • Schreuder S.M.
        • Lensing R.
        • Stoker J.
        • Bipat S.
        Monitoring treatment response in patients undergoing chemoradiotherapy for locally advanced uterine cervical cancer by additional diffusion-weighted imaging: a systematic review.
        J Magn Reson Imaging. 2015; 42: 572-594https://doi.org/10.1002/jmri.24784
        • de Mol van Otterloo S.R.
        • Christodouleas J.P.
        • Blezer E.L.A.
        • Akhiat H.
        • Brown K.
        • Choudhury A.
        • et al.
        The MOMENTUM study: an international registry for the evidence-based introduction of MR-guided adaptive therapy.
        Front Oncol. 2020; 10https://doi.org/10.3389/fonc.2020.01328
        • van Houdt P.J.
        • Yang Y.
        • van der Heide U.A.
        Quantitative magnetic resonance imaging for biological image-guided adaptive radiotherapy.
        Front Oncol. 2021; 10: 1-9https://doi.org/10.3389/fonc.2020.615643
        • Verkooijen H.M.
        • Kerkmeijer L.G.W.
        • Fuller C.D.
        • Huddart R.
        • Faivre-Finn C.
        • Verheij M.
        • et al.
        R-IDEAL: a framework for systematic clinical evaluation of technical innovations in radiation oncology.
        Front Oncol. 2017; 7: 1-7https://doi.org/10.3389/fonc.2017.00059
        • Kooreman E.S.
        • van Houdt P.J.
        • Nowee M.E.
        • van Pelt V.W.J.
        • Tijssen R.H.N.
        • Paulson E.S.
        • et al.
        Feasibility and accuracy of quantitative imaging on a 1.5 T MR-linear accelerator.
        Radiother Oncol. 2019; 133: 156-162https://doi.org/10.1016/j.radonc.2019.01.011
        • Yang Y.
        • Cao M.
        • Sheng K.
        • Gao Y.
        • Chen A.
        • Kamrava M.
        • et al.
        Longitudinal diffusion MRI for treatment response assessment: preliminary experience using an MRI-guided tri-cobalt 60 radiotherapy system.
        Med Phys. 2016; 43: 1369-1373https://doi.org/10.1118/1.4942381
        • Klüter S.
        Technical design and concept of a 0.35 T MR-Linac.
        Clin Transl Radiat Oncol. 2019; 18: 98-101https://doi.org/10.1016/j.ctro.2019.04.007
        • Lagendijk J.J.W.
        • Raaymakers B.W.
        • van Vulpen M.
        The magnetic resonance imaging-linac system.
        Semin Radiat Oncol. 2014; 24: 207-209https://doi.org/10.1016/j.semradonc.2014.02.009
        • Tofts P.S.
        QA: quality assurance, accuracy, precision and phantoms.
        in: Tofts P.S. Quantitative MRI of the Brain: Measuring Changes caused by Disease. John Wiley & Sons, 2003: 55-81
        • Shukla-Dave A.
        • Obuchowski N.A.
        • Chenevert T.L.
        • Jambawalikar S.
        • Schwartz L.H.
        • Malyarenko D.
        • et al.
        Quantitative imaging biomarkers alliance (QIBA) recommendations for improved precision of DWI and DCE-MRI derived biomarkers in multicenter oncology trials.
        J Magn Reson Imaging. 2019; 49: e101-e121https://doi.org/10.1002/jmri.26518
        • Gao Y.
        • Han F.
        • Zhou Z.
        • Cao M.
        • Kaprealian T.
        • Kamrava M.
        • et al.
        Distortion-free diffusion MRI using an MRI-guided Tri-Cobalt 60 radiotherapy system: sequence verification and preliminary clinical experience.
        Med Phys. 2017; 44: 5357-5366https://doi.org/10.1002/mp.12465
        • van Houdt P.J.
        • Kallehauge J.F.
        • Tanderup K.
        • Nout R.
        • Zaletelj M.
        • Tadic T.
        • et al.
        Phantom-based quality assurance for multicenter quantitative MRI in locally advanced cervical cancer.
        Radiother Oncol. 2020; 153: 114-121https://doi.org/10.1016/j.radonc.2020.09.013
        • Ford J.
        • Dogan N.
        • Young L.
        • Yang F.
        Quantitative radiomics: impact of pulse sequence parameter selection on MRI-based textural features of the brain.
        Contrast Media Mol Imaging. 2018; 2018: 1-9https://doi.org/10.1155/2018/1729071
        • Paudyal R.
        • Konar A.S.
        • Obuchowski N.A.
        • Hatzoglou V.
        • Chenevert T.L.
        • Malyarenko D.I.
        • et al.
        Repeatability of quantitative diffusion-weighted imaging metrics in phantoms, head-and-neck and thyroid cancers: preliminary findings.
        Tomogr (Ann Arbor, Mich). 2019; 5: 15-25https://doi.org/10.18383/j.tom.2018.00044
        • Kooreman E.S.
        • van Houdt P.J.
        • Keesman R.
        • Pos F.J.
        • van Pelt V.W.J.
        • Nowee M.E.
        • et al.
        ADC measurements on the Unity MR-linac – a recommendation on behalf of the Elekta Unity MR-linac consortium.
        Radiother Oncol. 2020; 153: 106-113https://doi.org/10.1016/j.radonc.2020.09.046
        • Coolens C.
        • Driscoll B.
        • Foltz W.
        • Svistoun I.
        • Sinno N.
        • Chung C.
        Unified platform for multimodal voxel-based analysis to evaluate tumour perfusion and diffusion characteristics before and after radiation treatment evaluated in metastatic brain cancer.
        Br J Radiol. 2019; 92: 1-8https://doi.org/10.1259/bjr.20170461
        • Chan R.W.
        • Chen H.
        • Myrehaug S.
        • Atenafu E.G.
        • Stanisz G.J.
        • Stewart J.
        • et al.
        Quantitative CEST and MT at 1.5T for monitoring treatment response in glioblastoma: early and late tumor progression during chemoradiation.
        J Neuro Oncol. 2020; https://doi.org/10.1007/s11060-020-03661-y