Advertisement
Original Research| Volume 148, P76-91, May 2021

Cardiotoxicity of immune checkpoint inhibitors: A systematic review and meta-analysis of randomised clinical trials

Published:April 20, 2021DOI:https://doi.org/10.1016/j.ejca.2021.01.043

      Highlights

      • Immune checkpoint inhibitors (ICIs) may cause life-threatening adverse events (AEs).
      • The risk of cardiotoxicity of ICIs has been poorly investigated.
      • In our meta-analysis, ICIs were not associated with increased cardiotoxicity risk.
      • Cardiac AEs in clinical trials should be reported as completely as possible.

      Abstract

      Background

      Immune checkpoint inhibitors (ICIs) may cause potentially life-threatening adverse events (AEs), but the risk of cardiotoxicity has not been fully investigated. It is also unknown whether ICI combinations increase cardiotoxicity compared with single ICI. We aimed to assess the cardiotoxicity of ICI in a range of tumour types.

      Methods

      This systematic review and meta-analysis was conducted according to PRISMA guidelines (PROSPERO registration number: CRD42020183524). A systematic search of PubMed, MEDLINE, Embase databases, and conference proceedings was performed up to 30 June 2020. All randomised clinical trials comparing ICI with other treatments (primary objective) or dual-agent ICI versus single-agent ICI (secondary objective) in any solid tumour were included. Pooled risk ratios (RRs) with 95% confidence intervals (95% CIs) for cardiotoxicity events were calculated using random effect models.

      Results

      Eighty studies including 35,337 patients were included in the analysis (66 studies with 34,664 patients for the primary endpoint and 14 studies with 673 patients for the secondary endpoint). No significant differences in terms of cardiac AEs were observed between ICI and non-ICI groups (RR 1.14, 95% CI 0.88–1.48, p = 0.326) nor between dual ICI and single ICI groups (RR 1.91, 95% CI 0.52–7.01, p = 0.329). Myocarditis incidence did not significantly differ between ICI and non-ICI groups (RR 1.11, 95% CI 0.64–1.92, p = 0.701) nor between dual ICI and single ICI groups (RR 1.10, 95% CI 0.31–3.87, p = 0.881). No differences were observed in subgroup analyses according to tumour type, setting of disease, treatment line, and type of treatment.

      Conclusion

      The use of ICI as single or combination regimens is not associated with increased risk of cardiotoxicity.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to European Journal of Cancer
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Lesokhin A.M.
        • Ansell S.M.
        • Armand P.
        • Scott E.C.
        • Halwani A.
        • Gutierrez M.
        • et al.
        Nivolumab in patients with relapsed or refractory hematologic malignancy: preliminary results of a phase Ib study.
        J Clin Oncol Off J Am Soc Clin Oncol. 2016; 34: 2698-2704https://doi.org/10.1200/JCO.2015.65.9789
        • Younes A.
        • Santoro A.
        • Shipp M.
        • Zinzani P.L.
        • Timmerman J.M.
        • Ansell S.
        • et al.
        Nivolumab for classical Hodgkin's lymphoma after failure of both autologous stem-cell transplantation and brentuximab vedotin: a multicentre, multicohort, single-arm phase 2 trial.
        Lancet Oncol. 2016; 17: 1283-1294https://doi.org/10.1016/S1470-2045(16)30167-X
        • Chen R.
        • Zinzani P.L.
        • Lee H.J.
        • Armand P.
        • Johnson N.A.
        • Brice P.
        • et al.
        Pembrolizumab in relapsed or refractory Hodgkin lymphoma: 2-year follow-up of KEYNOTE-087.
        Blood. 2019; 134: 1144-1153https://doi.org/10.1182/blood.2019000324
        • Larkin J.
        • Chiarion-Sileni V.
        • Gonzalez R.
        • Grob J.J.
        • Cowey C.L.
        • Lao C.D.
        • et al.
        Combined nivolumab and ipilimumab or monotherapy in untreated melanoma.
        N Engl J Med. 2015; 373: 23-34https://doi.org/10.1056/NEJMoa1504030
        • Postow M.A.
        • Chesney J.
        • Pavlick A.C.
        • Robert C.
        • Grossmann K.
        • McDermott D.
        • et al.
        Nivolumab and ipilimumab versus ipilimumab in untreated melanoma.
        N Engl J Med. 2015; 372: 2006-2017https://doi.org/10.1056/NEJMoa1414428
        • Robert C.
        • Long G.V.
        • Brady B.
        • Dutriaux C.
        • Maio M.
        • Mortier L.
        • et al.
        Nivolumab in previously untreated melanoma without BRAF mutation.
        N Engl J Med. 2015; 372: 320-330https://doi.org/10.1056/NEJMoa1412082
        • Topalian S.L.
        • Sznol M.
        • McDermott D.F.
        • Kluger H.M.
        • Carvajal R.D.
        • Sharfman W.H.
        • et al.
        Survival, durable tumor remission, and long-term safety in patients with advanced melanoma receiving nivolumab.
        J Clin Oncol Off J Am Soc Clin Oncol. 2014; 32: 1020-1030https://doi.org/10.1200/JCO.2013.53.0105
        • Rittmeyer A.
        • Barlesi F.
        • Waterkamp D.
        • Park K.
        • Ciardiello F.
        • von Pawel J.
        • et al.
        Atezolizumab versus docetaxel in patients with previously treated non-small-cell lung cancer (OAK): a phase 3, open-label, multicentre randomised controlled trial.
        Lancet. 2017; 389: 255-265https://doi.org/10.1016/S0140-6736(16)32517-X
        • Hellmann M.D.
        • Paz-Ares L.
        • Bernabe Caro R.
        • Zurawski B.
        • Kim S.-W.
        • Carcereny Costa E.
        • et al.
        Nivolumab plus ipilimumab in advanced non-small-cell lung cancer.
        N Engl J Med. 2019; 381: 2020-2031https://doi.org/10.1056/NEJMoa1910231
        • Reck M.
        • Rodríguez-Abreu D.
        • Robinson A.G.
        • Hui R.
        • Csőszi T.
        • Fülöp A.
        • et al.
        Pembrolizumab versus chemotherapy for PD-L1-positive non-small-cell lung cancer.
        N Engl J Med. 2016; 375: 1823-1833https://doi.org/10.1056/NEJMoa1606774
        • Motzer R.J.
        • Tannir N.M.
        • McDermott D.F.
        • Arén Frontera O.
        • Melichar B.
        • Choueiri T.K.
        • et al.
        Nivolumab plus ipilimumab versus sunitinib in advanced renal-cell carcinoma.
        N Engl J Med. 2018; 378: 1277-1290https://doi.org/10.1056/NEJMoa1712126
        • Motzer R.J.
        • Escudier B.
        • McDermott D.F.
        • George S.
        • Hammers H.J.
        • Srinivas S.
        • et al.
        Nivolumab versus everolimus in advanced renal-cell ccarcinoma.
        N Engl J Med. 2015; 373: 1803-1813https://doi.org/10.1056/NEJMoa1510665
        • Haanen J.B.A.G.
        • Carbonnel F.
        • Robert C.
        • Kerr K.M.
        • Peters S.
        • Larkin J.
        • et al.
        Management of toxicities from immunotherapy: ESMO Clinical Practice Guidelines for Diagnosis, Treatment and Follow-Up.
        Ann Oncol. 2017; 28: 119-142https://doi.org/10.1093/annonc/mdx225
        • Brumbaugh A.D.
        • Narurkar R.
        • Parikh K.
        • Fanucchi M.
        • Frishman W.H.
        Cardiac immune-related adverse events in immune checkpoint inhibition therapy.
        Cardiol Rev. 2019; 27: 97-107https://doi.org/10.1097/CRD.0000000000000217
        • Rahouma M.
        • Karim N.A.
        • Baudo M.
        • Yahia M.
        • Kamel M.
        • Eldessouki I.
        • et al.
        Cardiotoxicity with immune system targeting drugs: a meta-analysis of anti-PD/PD-L1 immunotherapy randomized clinical trials.
        Immunotherapy. 2019; 11: 725-735https://doi.org/10.2217/imt-2018-0118
        • Liberati A.
        • Altman D.G.
        • Tetzlaff J.
        • Mulrow C.
        • Gøtzsche P.C.
        • Ioannidis J.P.A.
        • et al.
        The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration.
        PLoS Med. 2009; 6e1000100https://doi.org/10.1371/journal.pmed.1000100
        • Johnson S.A.
        Anthracycline-induced cardiotoxicity in adult hematologic malignancies.
        Semin Oncol. 2006; 33: S22-S27https://doi.org/10.1053/j.seminoncol.2006.04.021
        • Mahmood S.S.
        • Fradley M.G.
        • Cohen J.V.
        • Nohria A.
        • Reynolds K.L.
        • Heinzerling L.M.
        • et al.
        Myocarditis in patients treated with immune checkpoint inhibitors.
        J Am Coll Cardiol. 2018; 71: 1755-1764https://doi.org/10.1016/j.jacc.2018.02.037
        • Johnson D.B.
        • Balko J.M.
        • Compton M.L.
        • Chalkias S.
        • Gorham J.
        • Xu Y.
        • et al.
        Fulminant myocarditis with combination immune checkpoint bblockade.
        N Engl J Med. 2016; 375: 1749-1755https://doi.org/10.1056/NEJMoa1609214
        • Wang D.Y.
        • Salem J.-E.
        • Cohen J.V.
        • Chandra S.
        • Menzer C.
        • Ye F.
        • et al.
        Fatal toxic effects associated with immune checkpoint inhibitors: a systematic review and meta-analysis.
        JAMA Oncol. 2018; 4: 1721-1728https://doi.org/10.1001/jamaoncol.2018.3923
        • Neilan T.G.
        • Rothenberg M.L.
        • Amiri-Kordestani L.
        • Sullivan R.J.
        • Steingart R.M.
        • Gregory W.
        • et al.
        Myocarditis associated with immune checkpoint inhibitors: an expert consensus on data gaps and a call to action.
        Oncol. 2018; 23: 874-878https://doi.org/10.1634/theoncologist.2018-0157
        • Nicolas P.
        • Juan L.
        • Bernard D.J.
        • Cezar I.
        • Anita D.
        Immune checkpoint inhibitor myocarditis: pathophysiological characteristics, diagnosis, and treatment.
        J Am Heart Assoc. 2020; 9e013757https://doi.org/10.1161/JAHA.119.013757
        • Puzanov I.
        • Diab A.
        • Abdallah K.
        • Bingham 3rd, C.O.
        • Brogdon C.
        • Dadu R.
        • et al.
        Managing toxicities associated with immune checkpoint inhibitors: consensus recommendations from the society for immunotherapy of cancer (SITC) toxicity management working group.
        J Immunother Cancer. 2017; 5: 95https://doi.org/10.1186/s40425-017-0300-z
        • Brahmer J.R.
        • Lacchetti C.
        • Schneider B.J.
        • Atkins M.B.
        • Brassil K.J.
        • Caterino J.M.
        • et al.
        Management of immune-related adverse events in patients treated with immune checkpoint inhibitor therapy: American society of clinical oncology clinical practice guideline.
        J Clin Oncol. 2018; 36: 1714-1768https://doi.org/10.1200/JCO.2017.77.6385
        • Hu J.-R.
        • Florido R.
        • Lipson E.J.
        • Naidoo J.
        • Ardehali R.
        • Tocchetti C.G.
        • et al.
        Cardiovascular toxicities associated with immune checkpoint inhibitors.
        Cardiovasc Res. 2019; 115: 854-868https://doi.org/10.1093/cvr/cvz026
        • Vaddepally R.K.
        • Kharel P.
        • Pandey R.
        • Garje R.
        • Chandra A.B.
        Review of indications of FDA-approved immune checkpoint inhibitors per NCCN guidelines with the level of evidence.
        Cancers. 2020; 12: 738https://doi.org/10.3390/cancers12030738
        • Lidbrink E.
        • Chmielowska E.
        • Otremba B.
        • Bouhlel A.
        • Lauer S.
        • Liste Hermoso M.
        • et al.
        A real-world study of cardiac events in > 3700 patients with HER2-positive early breast cancer treated with trastuzumab: final analysis of the OHERA study.
        Breast Canc Res Treat. 2019; 174: 187-196https://doi.org/10.1007/s10549-018-5058-6

      Linked Article