Advertisement

The impact of ARID1A mutation on molecular characteristics in colorectal cancer

Published:October 17, 2020DOI:https://doi.org/10.1016/j.ejca.2020.09.006

      Highlights

      • The impact of ARID1A mutations was analysed using 7978 colorectal cancer samples.
      • ARID1A mutation was linked to immune activation, right-sided tumour and early stage.
      • ARID1A mutation may be a biomarker for chemotherapy/radiotherapy and targeted therapy.

      Abstract

      Background

      ARID1A is a key subunit of the SWItch/Sucrose Non-Fermentable (SWI/SNF) complex which regulates dynamic repositioning of nucleosomes to repair DNA damage. Only small pilot studies have evaluated the role of ARID1A mutation in colorectal cancer (CRC). The aim of the present study was to explore the potential impact of ARID1A mutation on clinicopathological and molecular characteristics in CRC.

      Methods

      We used integrated data sets of 7978 CRC cases (one data set from a clinical laboratory improvement amendments [CLIA]-certified laboratory and three independent published data sets). The associations of ARID1A mutation with molecular characteristics including immune profile (the status of microsatellite instability [MSI], tumour mutational burden [TMB], programmed death ligand 1 [PD-L1] and estimated infiltrating immune cells), clinicopathological features and related pathways were analysed using next-generation sequencing, RNA sequencing and immunohistochemistry.

      Results

      ARID1A mutant samples had more genomically unstable tumour features (MSI-high and TMB-high) and exhibited more characteristics of a T-cell–inflamed microenvironment (PD-L1 expression and high estimated infiltrating cytotoxic T lymphocytes [CTLs]) than ARID1A wild-type samples in the discovery and validation cohorts. Even ARID1A mutant samples without MSI-high status were TMB-high, had high levels of PD-L1 expression and high estimated infiltrating CTLs. ARID1A mutations were more common with right-sided primary and earlier stage tumours. ARID1A mutant tumours mainly had co-occurring gene mutations related to chromatin modifying, DNA repair, WNT signalling and epidermal growth factor receptor inhibitor resistance pathways, and ARID1A mutations strongly regulated DNA repair pathways. Key genes for chemotherapy/radiotherapy sensitivity were suppressed in ARID1A mutant samples.

      Conclusions

      Our findings may provide novel insights to develop individualised approaches for treatment of CRC based on ARID1A mutation status.

      Keywords

      Abbreviations:

      CRC (colorectal cancer), CTL (cytotoxic T lymphocyte), IHC (immunohistochemistry), Mb (megabase), MSI (microsatellite instability), MSI-H (MSI-high), MSI-L (MSI-low), MSS (microsatellite stable), NGS (next-generation sequencing), PD-L1 (programmed death ligand 1), TMB (tumour mutational burden), TMB-H (TMB-high)
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to European Journal of Cancer
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Wu J.N.
        • Roberts C.W.
        ARID1A mutations in cancer: another epigenetic tumor suppressor?.
        Canc Discov. 2013; 3: 35-43
        • Watanabe R.
        • Ui A.
        • Kanno S.
        • Ogiwara H.
        • Nagase T.
        • Kohno T.
        • et al.
        SWI/SNF factors required for cellular resistance to DNA damage include ARID1A and ARID1B and show interdependent protein stability.
        Canc Res. 2014; 74: 2465-2475
        • Wilson B.G.
        • Roberts C.W.
        SWI/SNF nucleosome remodellers and cancer.
        Nat Rev Canc. 2011; 11: 481-492
        • Zhao J.
        • Liu C.
        • Zhao Z.
        ARID1A: a potential prognostic factor for breast cancer.
        Tumour Biol. 2014; 35: 4813-4819
        • Luchini C.
        • Veronese N.
        • Solmi M.
        • Cho H.
        • Kim J.H.
        • Chou A.
        • et al.
        Prognostic role and implications of mutation status of tumor suppressor gene ARID1A in cancer: a systematic review and meta-analysis.
        Oncotarget. 2015; 6: 39088-39097
        • Jones S.
        • Li M.
        • Parsons D.W.
        • Zhang X.
        • Wesseling J.
        • Kristel P.
        • et al.
        Somatic mutations in the chromatin remodeling gene ARID1A occur in several tumor types.
        Hum Mutat. 2012; 33: 100-103
        • Sharma P.
        • Hu-Lieskovan S.
        • Wargo J.A.
        • Ribas A.
        Primary, adaptive, and acquired resistance to cancer immunotherapy.
        Cell. 2017; 168: 707-723
        • Gibney G.T.
        • Weiner L.M.
        • Atkins M.B.
        Predictive biomarkers for checkpoint inhibitor-based immunotherapy.
        Lancet Oncol. 2016; 17: e542-e551
        • Le D.T.
        • Uram J.N.
        • Wang H.
        • Bartlett B.R.
        • Kemberling H.
        • Eyring A.D.
        • et al.
        PD-1 blockade in tumors with mismatch-repair deficiency.
        N Engl J Med. 2015; 372: 2509-2520
        • Hellmann M.D.
        • Ciuleanu T.E.
        • Pluzanski A.
        • Lee J.S.
        • Otterson G.A.
        • Audigier-Valette C.
        • et al.
        Nivolumab plus ipilimumab in lung cancer with a high tumor mutational burden.
        N Engl J Med. 2018; 378: 2093-2104
        • Garon E.B.
        • Rizvi N.A.
        • Hui R.
        • Leighl N.
        • Balmanoukian A.S.
        • Eder J.P.
        • et al.
        Pembrolizumab for the treatment of non-small-cell lung cancer.
        N Engl J Med. 2015; 372: 2018-2028
        • Shen J.
        • Ju Z.
        • Zhao W.
        • Wang L.
        • Peng Y.
        • Ge Z.
        • et al.
        ARID1A deficiency promotes mutability and potentiates therapeutic antitumor immunity unleashed by immune checkpoint blockade.
        Nat Med. 2018; 24: 556-562
        • Giannakis M.
        • Mu X.J.
        • Shukla S.A.
        • Qian Z.R.
        • Cohen O.
        • Nishihara R.
        • et al.
        Genomic correlates of immune-cell infiltrates in colorectal carcinoma.
        Cell Rep. 2016; 15: 857-865
        • Yaeger R.
        • Chatila W.K.
        • Lipsyc M.D.
        • Hechtman J.F.
        • Cercek A.
        • Sanchez-Vega F.
        • et al.
        Clinical sequencing defines the genomic landscape of metastatic colorectal cancer.
        Canc Cell. 2018; 33 (e3): 125-136
        • Gao J.
        • Aksoy B.A.
        • Dogrusoz U.
        • Dresdner G.
        • Gross B.
        • Sumer S.O.
        • et al.
        Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal.
        Sci Signal. 2013; 6: l1
        • Becht E.
        • Giraldo N.A.
        • Lacroix L.
        • Buttard B.
        • Elarouci N.
        • Petitprez F.
        • et al.
        Estimating the population abundance of tissue-infiltrating immune and stromal cell populations using gene expression.
        Genome Biol. 2016; 17: 218
        • Guinney J.
        • Dienstmann R.
        • Wang X.
        • de Reynies A.
        • Schlicker A.
        • Soneson C.
        • et al.
        The consensus molecular subtypes of colorectal cancer.
        Nat Med. 2015; 21: 1350-1356
        • Lu C.
        • Allis C.D.
        SWI/SNF complex in cancer.
        Nat Genet. 2017; 49: 178-179
        • Mathur R.
        ARID1A loss in cancer: towards a mechanistic understanding.
        Pharmacol Ther. 2018; 190: 15-23
        • Cristescu R.
        • Mogg R.
        • Ayers M.
        • Albright A.
        • Murphy E.
        • Yearley J.
        • et al.
        Pan-tumor genomic biomarkers for PD-1 checkpoint blockade-based immunotherapy.
        Science. 2018; 362
        • Zhu Y.P.
        • Sheng L.L.
        • Wu J.
        • Yang M.
        • Cheng X.F.
        • Wu N.N.
        • et al.
        Loss of ARID1A expression is associated with poor prognosis in patients with gastric cancer.
        Hum Pathol. 2018; 78: 28-35
        • Mathur R.
        • Alver B.H.
        • San Roman A.K.
        • Wilson B.G.
        • Wang X.
        • Agoston A.T.
        • et al.
        ARID1A loss impairs enhancer-mediated gene regulation and drives colon cancer in mice.
        Nat Genet. 2017; 49: 296-302
        • Wang S.C.
        • Nassour I.
        • Xiao S.
        • Zhang S.
        • Luo X.
        • Lee J.
        • et al.
        SWI/SNF component ARID1A restrains pancreatic neoplasia formation.
        Gut. 2019; 68: 1259-1270
        • Gao Xuyuan
        • Xu Hang
        • Ho James CM.
        • Chan Oscar SH.
        • Xu Feng
        • Wang Junwen
        • et al.
        EGFR-mutant lung adenocarcinomas mutation profiles reveal ARID1A might be a novel tyrosine kinase resistance pathway.
        Canc Res. 2018; 78 (Supplement, pp. LB-196)
        • Stintzing S.
        • Tejpar S.
        • Gibbs P.
        • Thiebach L.
        • Lenz H.J.
        Understanding the role of primary tumour localisation in colorectal cancer treatment and outcomes.
        Eur J Canc. 2017; 84: 69-80
        • Remy E.
        • Rebouissou S.
        • Chaouiya C.
        • Zinovyev A.
        • Radvanyi F.
        • Calzone L.
        A modeling approach to explain mutually exclusive and Co-occurring genetic alterations in bladder tumorigenesis.
        Canc Res. 2015; 75: 4042-4052
        • Shen J.
        • Peng Y.
        • Wei L.
        • Zhang W.
        • Yang L.
        • Lan L.
        • et al.
        ARID1A deficiency impairs the DNA damage checkpoint and sensitizes cells to PARP inhibitors.
        Canc Discov. 2015; 5: 752-767
        • Grasso C.S.
        • Giannakis M.
        • Wells D.K.
        • Hamada T.
        • Mu X.J.
        • Quist M.
        • et al.
        Genetic mechanisms of immune evasion in colorectal cancer.
        Canc Discov. 2018; 8: 730-749
        • Kim S.Y.
        • Choi Y.Y.
        • An J.Y.
        • Shin H.B.
        • Jo A.
        • Choi H.
        • et al.
        The benefit of microsatellite instability is attenuated by chemotherapy in stage II and stage III gastric cancer: results from a large cohort with subgroup analyses.
        Int J Canc. 2015; 137: 819-825
        • Fukumoto T.
        • Park P.H.
        • Wu S.
        • Fatkhutdinov N.
        • Karakashev S.
        • Nacarelli T.
        • et al.
        Repurposing pan-HDAC inhibitors for ARID1A-mutated ovarian cancer.
        Cell Rep. 2018; 22: 3393-3400
        • Bitler B.G.
        • Aird K.M.
        • Garipov A.
        • Li H.
        • Amatangelo M.
        • Kossenkov A.V.
        • et al.
        Synthetic lethality by targeting EZH2 methyltransferase activity in ARID1A-mutated cancers.
        Nat Med. 2015; 21: 231-238
        • Berns K.
        • Caumanns J.J.
        • Hijmans E.M.
        • Gennissen A.M.C.
        • Severson T.M.
        • Evers B.
        • et al.
        ARID1A mutation sensitizes most ovarian clear cell carcinomas to BET inhibitors.
        Oncogene. 2018 Aug; 37: 4611-4625