Highlights
- •Specific human leucocyte antigen types were correlated with pituitary immune-related adverse events (irAEs).
- •This was seen especially in patients with secondary adrenal insufficiency.
- •This information may enable effective prediction of irAEs.
- •These data could enable safer treatment with immune checkpoint inhibitors.
- •This study provides clues regarding the aetiology of these adverse events.
Abstract
Background
Immune checkpoint inhibitors (ICPis) induce various immune-related adverse events
(irAEs), despite their beneficial effects in treating various advanced cancers. ICPi-induced
secondary adrenal insufficiency is described as a prevalent and serious ‘pituitary
irAE.’ However, its precise mechanism remains unclear, and no definitive predictive
markers have been reported.
Patients and methods
We enrolled and studied 11 patients with advanced cancer (aged 39–70 years; 6 male
patients) receiving nivolumab, pembrolizumab or ipilimumab who developed pituitary
irAEs. Their clinical data, including endocrine functions, were retrospectively assessed
and human leucocyte antigen (HLA) genotypes were determined to compare the HLA allele
frequencies in these patients and healthy controls.
Results
Among 11 patients, 7, 3 and 1 patients exhibited malignant melanoma, non–small-cell
lung cancer and gastric cancer, respectively. HLA type screening results revealed
that HLA-DR15, B52 and Cw12 were observed in 9, 7, and 7 patients with pituitary irAE,
respectively. DR15, B52 and Cw12 were significantly more prevalent in our group than
in the healthy control group from the Japanese HLA-haplotype database (this study
vs healthy control group); DR15: 81.8% vs 33.5% (n = 11, P = 0.0014), B52: 63.6% vs 21.0% (n = 11, P = 0.0026) and Cw12: 70% vs 21.3% (n = 10, P = 0.0013).
Conclusions
HLA-DR15, B52 and Cw12 are possible predisposing factors for pituitary irAEs. HLA-DR15
is reportedly associated with autoimmune disease via interleukin-17 regulation, suggesting
its involvement in pituitary irAE development. Using HLA haplotypes as pituitary irAE
predictive markers, we could provide safe ICPi treatment and understand irAE pathogenesis.
Keywords
Abbreviations:
CTLA4 (cytotoxic T-lymphocyte–associated antigen-4), HLA (human leucocyte antigen), ICPis (immune checkpoint inhibitors), IL (interleukin), irAE (immune-related adverse event), MRI (magnetic resonance imaging), PD-1 (programmed cell death-1), PD-L1 (programmed death-ligand-1), Th (helper T), T1DM (type 1 diabetes mellitus)To read this article in full you will need to make a payment
Purchase one-time access:
Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online accessOne-time access price info
- For academic or personal research use, select 'Academic and Personal'
- For corporate R&D use, select 'Corporate R&D Professionals'
Subscribe:
Subscribe to European Journal of CancerAlready a print subscriber? Claim online access
Already an online subscriber? Sign in
Register: Create an account
Institutional Access: Sign in to ScienceDirect
References
- Safety, activity, and immune correlates of anti-PD-1 antibody in cancer.N Engl J Med. 2012; 366: 2443-2454https://doi.org/10.1056/NEJMoa1200690
- Endocrine toxicity of cancer immunotherapy targeting immune checkpoints.Endocr Rev. 2019; 40: 17-65https://doi.org/10.1210/er.2018-00006
- Immune-related adverse events associated with anti-PD-1/PD-L1 treatment for malignancies: a meta-analysis.Front Pharmacol. 2017; 8: 730https://doi.org/10.3389/fphar.2017.00730
- Isolated ACTH deficiency probably induced by autoimmune-related mechanism evoked with nivolumab.Jpn J Clin Oncol. 2017; 47: 463-466https://doi.org/10.1093/jjco/hyx018
- A case of acute exacerbation of chronic adrenal insufficiency due to ipilimumab treatment for advanced melanoma.Am J Case Rep. 2019; 20: 106-110https://doi.org/10.12659/ajcr.913021
- Monitoring immune-checkpoint blockade: response evaluation and biomarker development.Nat Rev Clin Oncol. 2017; 14: 655-668https://doi.org/10.1038/nrclinonc.2017.88
- Mechanism-driven biomarkers to guide immune checkpoint blockade in cancer therapy.Nat Rev Canc. 2016; 16: 275-287https://doi.org/10.1038/nrc.2016.36
- Genetic and phenotypic landscape of the major histocompatibility complex region in the Japanese population.Nat Genet. 2019; 51: 470-480https://doi.org/10.1038/s41588-018-0336-0
- A case of nivolumab-induced acute-onset type 1 diabetes mellitus in melanoma.Curr Oncol. 2019; 26: e115-e118https://doi.org/10.3747/co.26.4130
- HLA Markers DQ8 and DR53 are associated with lymphocytic hypophysitis and may aid in differential diagnosis.J Clin Endocrinol Metab. 2015; 100: 4092-4097https://doi.org/10.1210/jc.2015-2702
- Determination of HLA-A, -C, -B, -DRB1 allele and haplotype frequency in Japanese population based on family study.Tissue Antigens. 2015; 85: 252-259https://doi.org/10.1111/tan.12536
- Adrenal insufficiency.Lancet. 2014; 383: 2152-2167https://doi.org/10.1016/S0140-6736(13)61684-0
- Diagnosis and treatment of adrenal insufficiency including adrenal crisis: a Japan Endocrine Society clinical practice guideline [Opinion].Endocr J. 2016; 63: 765-784https://doi.org/10.1507/endocrj.ej16-0242
- Class II HLA genotype in fulminant type 1 diabetes: a nationwide survey with reference to glutamic acid decarboxylase antibodies.J Diabetes Investig. 2012; 3: 62-69https://doi.org/10.1111/j.2040-1124.2011.00139.x
- Influence of the HLA-DR4 antigen and iodine status on the development of autoimmune postpartum thyroiditis.J Clin Endocrinol Metab. 1985; 60: 168-173https://doi.org/10.1016/b978-0-12-731950-6.50046-2
- Genetic risk and a primary role for cell–mediated immune mechanisms in multiple sclerosis.Nature. 2011; 476: 214-219https://doi.org/10.1038/nature10251
- Analysis of genes within the HLA region affecting susceptibility to ulcerative colitis.Hum Immunol. 1993; 36: 112-118https://doi.org/10.1016/0198-8859(93)90113-f
- The HLA complex in Goodpasture's disease: a model for analyzing susceptibility to autoimmunity.Kidney Int. 1999; 56: 1638-1653https://doi.org/10.1046/j.1523-1755.1999.00720.x
- Intrathecal activation of the IL-17/IL-8 axis in opticospinal multiple sclerosis.Brain. 2005; 128: 988-1002https://doi.org/10.1093/brain/awh453
- IL23 differentially regulates the Th1/Th17 balance in ulcerative colitis and Crohn's disease.Gut. 2008; 57: 1682-1689https://doi.org/10.1136/gut.2007.135053
- IL-23, not IL-12, directs autoimmunity to the Goodpasture antigen.J Am Soc Nephrol. 2009; 20: 980-989https://doi.org/10.1681/asn.2008080891
- Dominant protection from HLA-linked autoimmunity by antigen-specific regulatory T cells.Nature. 2017; 545: 243-247https://doi.org/10.1038/nature22329
- PD-1 blockade augments Th1 and Th17 and suppresses Th2 responses in peripheral blood from patients with prostate and advanced melanoma cancer.J Immunother. 2012; 35: 169-178https://doi.org/10.1097/cji.0b013e318247a4e7
- Immunological characteristics of colitis associated with anti-CTLA-4 antibody therapy.Canc Invest. 2017; 35: 443-455https://doi.org/10.1080/07357907.2017.1324032
- Histopathological and immunophenotypic features of ipilimumab-associated colitis compared to ulcerative colitis.J Intern Med. 2018; 283: 568-577https://doi.org/10.1111/joim.12744
- Anti-GBM disease following CTLA4 blockade in a patient with metastatic melanoma.NDT Plus. 2010; 3: 135-137https://doi.org/10.1093/ndtplus/sfp177
- Incidence of endocrine dysfunction following the use of different immune checkpoint inhibitor regimens: a systematic review and meta-analysis.JAMA Oncol. 2018; 4: 173-182https://doi.org/10.1001/jamaoncol.2017.3064
- Hypophysitis secondary to cytotoxic T-lymphocyte-associated protein 4 blockade: insights into pathogenesis from an autopsy series.Am J Pathol. 2016; 186: 3225-3235https://doi.org/10.1016/j.ajpath.2016.08.020
- Pituitary expression of CTLA-4 mediates hypophysitis secondary to administration of CTLA-4 blocking antibody.Sci Transl Med. 2014; 6 (230ra45)https://doi.org/10.1126/scitranslmed.3008002
- Takayasu's arteritis is associated with HLA-B∗52, but not with HLA-B∗51, in Turkey.Arthritis Res Ther. 2012; 14: R27https://doi.org/10.1186/ar3730
- Lymphocytic adenohypophysitis and lymphocytic infundibuloneurohypophysitis.Endocr J. 1997; 44: 1-10https://doi.org/10.1507/endocrj.44.1
- Human leucocyte antigens coeliac haplotypes and primary autoimmune hypophysitis in caucasian patients.Clin Endocrinol (Oxf). 2018; 88: 692-699https://doi.org/10.1111/cen.13566
Article info
Publication history
Published online: March 28, 2020
Accepted:
February 28,
2020
Received in revised form:
February 24,
2020
Received:
July 3,
2019
Identification
Copyright
© 2020 Elsevier Ltd. All rights reserved.
ScienceDirect
Access this article on ScienceDirectLinked Article
- Consideration regarding immune checkpoint inhibitor–induced secondary adrenal insufficiency in patients lacking human leucocyte antigen-DR15European Journal of CancerVol. 143
- PreviewWe read the article entitled ‘Human leucocyte antigen DR15, a possible predictive marker for immune checkpoint inhibitor-induced secondary adrenal insufficiency’ by Seiichi Yano et al. [1] with great interest. The authors reported significantly higher prevalence of human leucocyte antigen (HLA)-DR15, B52, and Cw12 in 11 patients with immune checkpoint inhibitor (ICPi)–induced secondary adrenal insufficiency as compared with Japanese healthy controls. Furthermore, they presented the possibility of HLA-DR15 as a predictive marker of a pituitary immune-related adverse event (irAE).
- Full-Text
- Preview