Advertisement
Original Research| Volume 130, P198-203, May 2020

Download started.

Ok

Human leucocyte antigen DR15, a possible predictive marker for immune checkpoint inhibitor–induced secondary adrenal insufficiency

Published:March 28, 2020DOI:https://doi.org/10.1016/j.ejca.2020.02.049

      Highlights

      • Specific human leucocyte antigen types were correlated with pituitary immune-related adverse events (irAEs).
      • This was seen especially in patients with secondary adrenal insufficiency.
      • This information may enable effective prediction of irAEs.
      • These data could enable safer treatment with immune checkpoint inhibitors.
      • This study provides clues regarding the aetiology of these adverse events.

      Abstract

      Background

      Immune checkpoint inhibitors (ICPis) induce various immune-related adverse events (irAEs), despite their beneficial effects in treating various advanced cancers. ICPi-induced secondary adrenal insufficiency is described as a prevalent and serious ‘pituitary irAE.’ However, its precise mechanism remains unclear, and no definitive predictive markers have been reported.

      Patients and methods

      We enrolled and studied 11 patients with advanced cancer (aged 39–70 years; 6 male patients) receiving nivolumab, pembrolizumab or ipilimumab who developed pituitary irAEs. Their clinical data, including endocrine functions, were retrospectively assessed and human leucocyte antigen (HLA) genotypes were determined to compare the HLA allele frequencies in these patients and healthy controls.

      Results

      Among 11 patients, 7, 3 and 1 patients exhibited malignant melanoma, non–small-cell lung cancer and gastric cancer, respectively. HLA type screening results revealed that HLA-DR15, B52 and Cw12 were observed in 9, 7, and 7 patients with pituitary irAE, respectively. DR15, B52 and Cw12 were significantly more prevalent in our group than in the healthy control group from the Japanese HLA-haplotype database (this study vs healthy control group); DR15: 81.8% vs 33.5% (n = 11, P = 0.0014), B52: 63.6% vs 21.0% (n = 11, P = 0.0026) and Cw12: 70% vs 21.3% (n = 10, P = 0.0013).

      Conclusions

      HLA-DR15, B52 and Cw12 are possible predisposing factors for pituitary irAEs. HLA-DR15 is reportedly associated with autoimmune disease via interleukin-17 regulation, suggesting its involvement in pituitary irAE development. Using HLA haplotypes as pituitary irAE predictive markers, we could provide safe ICPi treatment and understand irAE pathogenesis.

      Keywords

      Abbreviations:

      CTLA4 (cytotoxic T-lymphocyte–associated antigen-4), HLA (human leucocyte antigen), ICPis (immune checkpoint inhibitors), IL (interleukin), irAE (immune-related adverse event), MRI (magnetic resonance imaging), PD-1 (programmed cell death-1), PD-L1 (programmed death-ligand-1), Th (helper T), T1DM (type 1 diabetes mellitus)
      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to European Journal of Cancer
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Topalian S.L.
        • Hodi F.S.
        • Brahmer J.R.
        • Gettinger S.N.
        • Smith D.C.
        • McDermott D.F.
        • et al.
        Safety, activity, and immune correlates of anti-PD-1 antibody in cancer.
        N Engl J Med. 2012; 366: 2443-2454https://doi.org/10.1056/NEJMoa1200690
        • Chang L.S.
        • Barroso-Sousa R.
        • Tolaney S.M.
        • Hodi S.F.
        • Kaiser U.B.
        • Min L.
        • et al.
        Endocrine toxicity of cancer immunotherapy targeting immune checkpoints.
        Endocr Rev. 2019; 40: 17-65https://doi.org/10.1210/er.2018-00006
        • Wang P.F.
        • Chen Y.
        • Song S.Y.
        • Wang T.J.
        • Ji W.J.
        • Li S.W.
        • et al.
        Immune-related adverse events associated with anti-PD-1/PD-L1 treatment for malignancies: a meta-analysis.
        Front Pharmacol. 2017; 8: 730https://doi.org/10.3389/fphar.2017.00730
        • Kitajima K.
        • Ashida K.
        • Wada N.
        • Suetsugu R.
        • Takeichi Y.
        • Sakamoto S.
        • et al.
        Isolated ACTH deficiency probably induced by autoimmune-related mechanism evoked with nivolumab.
        Jpn J Clin Oncol. 2017; 47: 463-466https://doi.org/10.1093/jjco/hyx018
        • Sakaguchi C.
        • Yano S.
        • Ashida K.
        • Wada N.
        • Ohe K.
        • Nagata H.
        • et al.
        A case of acute exacerbation of chronic adrenal insufficiency due to ipilimumab treatment for advanced melanoma.
        Am J Case Rep. 2019; 20: 106-110https://doi.org/10.12659/ajcr.913021
        • Nishino M.
        • Ramaiya N.H.
        • Hatabu H.
        • Hodi F.S.
        Monitoring immune-checkpoint blockade: response evaluation and biomarker development.
        Nat Rev Clin Oncol. 2017; 14: 655-668https://doi.org/10.1038/nrclinonc.2017.88
        • Topalian S.L.
        • Taube J.M.
        • Anders R.A.
        • Pardoll D.M.
        Mechanism-driven biomarkers to guide immune checkpoint blockade in cancer therapy.
        Nat Rev Canc. 2016; 16: 275-287https://doi.org/10.1038/nrc.2016.36
        • Hirata J.
        • Hosomichi K.
        • Sakaue S.
        • Kanai M.
        • Nakaoka H.
        • Ishigaki K.
        • et al.
        Genetic and phenotypic landscape of the major histocompatibility complex region in the Japanese population.
        Nat Genet. 2019; 51: 470-480https://doi.org/10.1038/s41588-018-0336-0
        • Sakaguchi C.
        • Ashida K.
        • Yano S.
        • Ohe K.
        • Wada N.
        • Hasuzawa N.
        • et al.
        A case of nivolumab-induced acute-onset type 1 diabetes mellitus in melanoma.
        Curr Oncol. 2019; 26: e115-e118https://doi.org/10.3747/co.26.4130
        • Heaney A.P.
        • Sumerel B.
        • Rajalingam R.
        • Bergsneider M.
        • Yong W.H.
        • Liau L.M.
        • et al.
        HLA Markers DQ8 and DR53 are associated with lymphocytic hypophysitis and may aid in differential diagnosis.
        J Clin Endocrinol Metab. 2015; 100: 4092-4097https://doi.org/10.1210/jc.2015-2702
        • Ikeda N.
        • Kojima H.
        • Nishikawa M.
        • Hayashi K.
        • Futagami T.
        • Tsujino T.
        • et al.
        Determination of HLA-A, -C, -B, -DRB1 allele and haplotype frequency in Japanese population based on family study.
        Tissue Antigens. 2015; 85: 252-259https://doi.org/10.1111/tan.12536
        • Charmandari E.
        • Nicolaides N.C.
        • Chrousos G.P.
        Adrenal insufficiency.
        Lancet. 2014; 383: 2152-2167https://doi.org/10.1016/S0140-6736(13)61684-0
        • Yanase T.
        • Tajima T.
        • Katabami T.
        • Iwasaki Y.
        • Tanahashi Y.
        • Sugawara A.
        • et al.
        Diagnosis and treatment of adrenal insufficiency including adrenal crisis: a Japan Endocrine Society clinical practice guideline [Opinion].
        Endocr J. 2016; 63: 765-784https://doi.org/10.1507/endocrj.ej16-0242
        • Tsutsumi C.
        • Imagawa A.
        • Ikegami H.
        • Makino H.
        • Kobayashi T.
        • Hanafusa T.
        • et al.
        Class II HLA genotype in fulminant type 1 diabetes: a nationwide survey with reference to glutamic acid decarboxylase antibodies.
        J Diabetes Investig. 2012; 3: 62-69https://doi.org/10.1111/j.2040-1124.2011.00139.x
        • Jansson R.
        • Säfwenberg J.
        • Dahlberg P.A.
        Influence of the HLA-DR4 antigen and iodine status on the development of autoimmune postpartum thyroiditis.
        J Clin Endocrinol Metab. 1985; 60: 168-173https://doi.org/10.1016/b978-0-12-731950-6.50046-2
        • Sawcer S.
        • Hellenthal G.
        • Pirinen M.
        • Spencer C.C.A.
        • Patsopoulos N.A.
        • Moutsianas L.
        • et al.
        Genetic risk and a primary role for cell–mediated immune mechanisms in multiple sclerosis.
        Nature. 2011; 476: 214-219https://doi.org/10.1038/nature10251
        • Sugimura K.
        • Asakura H.
        • Mizuki N.
        • Inoue N.
        • Hibi T.
        • Yagita A.
        • et al.
        Analysis of genes within the HLA region affecting susceptibility to ulcerative colitis.
        Hum Immunol. 1993; 36: 112-118https://doi.org/10.1016/0198-8859(93)90113-f
        • Phelps R.G.
        • Rees A.J.
        The HLA complex in Goodpasture's disease: a model for analyzing susceptibility to autoimmunity.
        Kidney Int. 1999; 56: 1638-1653https://doi.org/10.1046/j.1523-1755.1999.00720.x
        • Ishizu T.
        • Osoegawa M.
        • Mei F.J.
        • Kikuchi H.
        • Tanaka M.
        • Takakura Y.
        • et al.
        Intrathecal activation of the IL-17/IL-8 axis in opticospinal multiple sclerosis.
        Brain. 2005; 128: 988-1002https://doi.org/10.1093/brain/awh453
        • Kobayashi T.
        • Okamoto S.
        • Hisamatsu T.
        • Kamada N.
        • Chinen H.
        • Saito R.
        • et al.
        IL23 differentially regulates the Th1/Th17 balance in ulcerative colitis and Crohn's disease.
        Gut. 2008; 57: 1682-1689https://doi.org/10.1136/gut.2007.135053
        • Ooi J.D.
        • Phoon R.K.
        • Holdsworth S.R.
        • Kitching A.R.
        IL-23, not IL-12, directs autoimmunity to the Goodpasture antigen.
        J Am Soc Nephrol. 2009; 20: 980-989https://doi.org/10.1681/asn.2008080891
        • Ooi J.D.
        • Petersen J.
        • Tan Y.H.
        • Huynh M.
        • Willett Z.J.
        • Ramarathinam S.H.
        • et al.
        Dominant protection from HLA-linked autoimmunity by antigen-specific regulatory T cells.
        Nature. 2017; 545: 243-247https://doi.org/10.1038/nature22329
        • Dulos J.
        • Carven G.J.
        • van Boxtel S.J.
        • Evers S.
        • Driessen-Engels L.J.A.
        • Willemijn H.
        • et al.
        PD-1 blockade augments Th1 and Th17 and suppresses Th2 responses in peripheral blood from patients with prostate and advanced melanoma cancer.
        J Immunother. 2012; 35: 169-178https://doi.org/10.1097/cji.0b013e318247a4e7
        • Bamias G.
        • Delladetsima I.
        • Perdiki M.
        • Siakavellas S.I.
        • Goukos D.
        • Papatheodoridis G.V.
        • et al.
        Immunological characteristics of colitis associated with anti-CTLA-4 antibody therapy.
        Canc Invest. 2017; 35: 443-455https://doi.org/10.1080/07357907.2017.1324032
        • Adler B.L.
        • Pezhouh M.K.
        • Kim A.
        • Luan L.
        • Zhu Q.
        • Gani F.
        • et al.
        Histopathological and immunophenotypic features of ipilimumab-associated colitis compared to ulcerative colitis.
        J Intern Med. 2018; 283: 568-577https://doi.org/10.1111/joim.12744
        • Sammartino C.
        • Goodman D.
        • Flanagan G.
        • Hill P.
        Anti-GBM disease following CTLA4 blockade in a patient with metastatic melanoma.
        NDT Plus. 2010; 3: 135-137https://doi.org/10.1093/ndtplus/sfp177
        • Barroso-Sousa R.
        • Barry W.T.
        • Garrido-Castro A.C.
        • Hodi F.S.
        • Min L.
        • Krop I.E.
        • et al.
        Incidence of endocrine dysfunction following the use of different immune checkpoint inhibitor regimens: a systematic review and meta-analysis.
        JAMA Oncol. 2018; 4: 173-182https://doi.org/10.1001/jamaoncol.2017.3064
        • Caturegli P.
        • Di Dalmazi G.
        • Lombardi M.
        • Grosso F.
        • Larman H.B.
        • Larman T.
        • et al.
        Hypophysitis secondary to cytotoxic T-lymphocyte-associated protein 4 blockade: insights into pathogenesis from an autopsy series.
        Am J Pathol. 2016; 186: 3225-3235https://doi.org/10.1016/j.ajpath.2016.08.020
        • Iwama S.
        • De Remigis A.
        • Callahan M.K.
        • Slovin S.F.
        • Wolchok J.D.
        • Caturegli P.
        Pituitary expression of CTLA-4 mediates hypophysitis secondary to administration of CTLA-4 blocking antibody.
        Sci Transl Med. 2014; 6 (230ra45)https://doi.org/10.1126/scitranslmed.3008002
        • Sahin Z.
        • Bıcakcıgil M.
        • Aksu K.
        • Kamali S.
        • Akar S.
        • Onen F.
        • et al.
        Takayasu's arteritis is associated with HLA-B∗52, but not with HLA-B∗51, in Turkey.
        Arthritis Res Ther. 2012; 14: R27https://doi.org/10.1186/ar3730
        • Hashimoto K.
        • Takao T.
        • Makino S.
        Lymphocytic adenohypophysitis and lymphocytic infundibuloneurohypophysitis.
        Endocr J. 1997; 44: 1-10https://doi.org/10.1507/endocrj.44.1
        • Chiloiro S.
        • Capoluongo E.D.
        • Tartaglione T.
        • Bianchi A.
        • Giampetro A.
        • Angelini F.
        • et al.
        Human leucocyte antigens coeliac haplotypes and primary autoimmune hypophysitis in caucasian patients.
        Clin Endocrinol (Oxf). 2018; 88: 692-699https://doi.org/10.1111/cen.13566

      Linked Article