Impact of radiation, systemic therapy and treatment sequencing on survival of patients with melanoma brain metastases

Ricarda Rauschenberg a,b,1, Johannes Bruns c,1, Julia Brütting a,1, Dirk Daubner d, Fabian Lohaus e,f,g, Lisa Zimmer h, Andrea Forschner i, Daniel Zips j, Jessica C. Hassel k, Carola Berking l, Katharina C. Kaehler m, Jochen Utikal n, Ralf Gutzmer o, Patrik Terheyden p, Frank Meiss q, David Rafei-Shamsabadi q, Felix Kiecker r, Dirk Debus s, Evelyn Dabrowski t, Andreas Arnold u, Marlene Garzarolli a,b, Marvin Kuske a,b, Stefan Beissert a,b, Steffen Löck e, Jennifer Linn e, Esther G.C. Troost b,e,f,g,v,1, Friedegund Meier a,b,f,*,1

a Skin Cancer Center at the University Cancer Centre, Department of Dermatology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany
b National Center for Tumor Diseases (NCT), Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany
c Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
d Institute of Neuroradiology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
e Department of Radiotherapy and Radiation Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
f German Cancer Consortium (DKTK), Partner Site Dresden, and German Cancer Research Center (DKFZ), Heidelberg, Germany
g OncoRay - National Center for Radiation Research in Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden - Rossendorf, Dresden, Germany
h Department of Dermatology, University Hospital, University Duisburg-Essen, Germany & German Cancer Consortium (DKTK), Heidelberg, Germany

Abbreviations: anti-CTLA-4, cytotoxic T-lymphocyte-associated protein 4 antibody/antibodies; anti-PD-1, programmed cell death protein 1 antibody/antibodies; BRAF, v-Raf murine sarcoma viral oncogene homolog B; BRAFi, BRAF inhibitor/s; BRAFmut, BRAF mutation / mutated; BRAFwt: BRAF wild type; CTCAE, Common Terminology Criteria for Adverse Events; ECOC PS, Eastern Cooperative Oncology Group performance status; IT, immunotherapy; LDH, lactate dehydrogenase; LINAC, linear accelerator; MBMs, melanoma brain metastases; MEK, mitogen activated protein kinase; MEKi, MEK inhibitor/s, OS, overall survival; OSRT, overall survival from beginning of radiotherapy; PD-1, programmed cell death protein 1; RT, radiotherapy; SRS, stereotactic radiosurgery; ST, systemic therapy; TT, targeted therapy; WBRT, whole brain radiation therapy.

* Corresponding author: Skin Cancer Center at the University Cancer Centre, National Center for Tumor Diseases, Department of Dermatology, University Hospital Carl Gustav Carus at the TU Dresden, Fetscherstr. 74, 01307 Dresden, Germany. Fax: +49 351 458 5759.
E-mail address: Friedegund.Meier@uniklinikum-dresden.de (F. Meier).

1 Contributed equally.

https://doi.org/10.1016/j.ejca.2018.12.023
0959-8049/© 2019 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
KEYWORDS
Melanoma; Brain metastases; Stereotactic radiosurgery; Whole brain radiation therapy; Immunotherapies; Targeted therapy; Immune checkpoint inhibitors; BRAF inhibitors

Abstract Background: Combining stereotactic radiosurgery (SRS) and active systemic therapies (STs) achieved favourable survival outcomes in patients with melanoma brain metastases (MBMs) in retrospective analyses. However, several aspects of this treatment strategy remain poorly understood. We report on the overall survival (OS) of patients with MBM treated with a combination of radiotherapy (RT) and ST as well as the impact of the v-Raf murine sarcoma viral oncogene homolog B (BRAF)-V600 mutation (BRAFmut) status, types of RT and ST and their sequence.

Patients and methods: Data of 208 patients treated with SRS or whole brain radiation therapy (WBRT) and either immunotherapy (IT) or targeted therapy (TT) within a 6-week interval to RT were analysed retrospectively. OS was calculated from RT to death or last follow-up. Univariate and multivariate Cox proportional hazard analyses were performed to determine prognostic features associated with OS.

Results: The median follow-up was 7.3 months. 139 patients received IT, 67 received TT and 2 received IT and TT within 6 weeks to RT (WBRT 45%; SRS 55%). One-year Kaplan-Meier OS rates were 69%, 65%, 33% and 18% (P < .001) for SRS with IT, SRS with TT, WBRT with IT and WBRT with TT, respectively. Patients with a BRAFmut receiving IT combined with RT experienced higher OS rates (88%, 65%, 50% and 18%). TT following RT or started before and continued thereafter was associated with improved median OS compared with TT solely before RT (12.2 [95% confidence interval {CI} 9.3–15.1]; 9.8 [95% CI 6.9–12.6] versus 5.1 [95% CI 2.7–7.5]; P = .03).

Conclusion: SRS and IT achieved the highest OS rates. A BRAFmut appears to be a favourable prognostic factor for OS. For the combination of RT and TT, the sequence appears to be crucial. Combinations of WBRT and ST achieved unprecedentedly high OS rates and warrant further studies.

© 2019 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Considering a median overall survival (OS) of roughly 2 months with best supportive care only, the prognosis for patients with melanoma brain metastases (MBMs) is grim [1]. Until 2011, local therapies (e. g. neurosurgery and radiotherapy [RT]) were the only treatment options for MBM and remain recommended standard treatments for selected patients [2,3]. Clinical studies on chemotherapies have failed to show any survival benefit [4,5]. Recently, the v-Raf murine sarcoma viral oncogene homolog B (BRAF) inhibitor (BRAFi) dabrafenib combined with the mitogen activated protein kinase (MEK) inhibitor (MEKi) trametinib and the immune
checkpoint inhibitors anti—cytotoxic T-lymphocyte-associated protein 4 antibody (CTLA-4) ipilimumab combined with anti—programmed cell death protein 1 (PD)-1 nivolumab demonstrated activity against MBM with response rates of 50—60%—comparable to those outside the brain [6—8]. Nevertheless, most patients progress and die from MBM [9].

Preclinical and clinical data suggest that combining RT with immune checkpoint inhibitors augments the immunogenic cell death induced by RT [10—14] and that BRAFi increases radiosensitivity by a G1 cell cycle arrest [15,16]. However, there are concerns regarding toxicity when combining RT with immunotherapy (IT) or targeted therapy (TT), in particular skin toxicity, oedema, haemorrhage and radionecrosis [17—19].

Retrospective analyses suggest that combining stereotactic radiosurgery (SRS) with active systemic therapies (STs) improves MBM control and prolongs survival without increasing toxicity [20—23].

Here, we report on the OS and toxicity of more than 200 patients with MBM treated with radiation and new systemic agents in Germany. Furthermore, we explored the impact of the BRAF-V600 mutation (BRAFmut) status, types of RT and ST and their sequence on OS.

2. Methods

2.1. Patient characteristics and treatment regimens

Following ethics board approval, a retrospective analysis of patients having received SRS or whole brain radiation therapy (WBRT) for at least one MBM and additionally either IT (either anti-PD-1 or anti-CTLA-4 alone or combined) or TT (BRAFi or BRAFi + MEKi) within a 6-week interval to RT (before, after or started before and continued after RT) was conducted. Fourteen German Skin Cancer Centres participated and provided data of patients treated between March 2014 and August 2016.

Prior to treatment, the patients had undergone magnetic resonance imaging of the brain and a total-body computer tomography for the assessment of intracerebral and extracerebral disease according to Response Evaluation Criteria in Solid Tumors (RECIST), version 1.1. MBM were treated with SRS in a single session or fractionated, using either a linear accelerator-based or a Gamma-knife approach. Radiosurgery was delivered according to local standards. WBRT was delivered either alone or with an additional boost.

2.2. End-points and statistical analysis

The primary end-point of this study was overall survival from beginning of radiotherapy (OSRT), defined as interval from the beginning of RT to death. OSRT rates were calculated applying the Kaplan-Meier method with the log-rank test used to determine differences between treatment regimens. Patients who did not experience the outcome were censored at their last follow-up date. Univariate and multivariate Cox proportional hazard regression analyses were performed on prognostic factors associated with OSRT (applying the entrance method), and the following variables were included age, gender, Eastern Cooperative Oncology Group performance status, types of RT and ST. Variables with $P \leq .01$ on univariate analysis were included in the multivariate analysis.

3. Results

3.1. Patient characteristics and treatment regimens

A total of 208 patients were included in this study. The median follow-up was 7.3 (range: 0—40.5) months. Patient and disease characteristics are summarised in supplementary Table S1. The median age at initial MBM diagnosis was 60.1 (range 26.6—92.7) years. Neuroimaging before RT indicated a single MBM in 55 patients, 2—3 MBM in 49 patients and >3 MBM in 99 patients, respectively. Besides, 174 (84%) patients had extracerebral metastases.

In total, 128 (62%) patients had melanoma with a BRAFmut. They tended to have a higher frequency of >3 MBM (54% versus 39%; $P = .07$) and of neurological symptoms (36% versus 22%; $P = .06$) than patients without a BRAF mutation (BRAF wild type, BRAFwt) (supplementary Table S2a). ECOG PS, S100 and lactate dehydrogenase (LDH) levels did not differ significantly between both subgroups.

Altogether, 114 (55%) patients received SRS (supplementary Table S2b). In this group, the median number of irradiated MBM was 1 (range 1—7), the median number of fractions 1 (range 1—13) and the resulting median total dose 20Gy (range 9—60Gy) delivered in fractions of 20Gy (range 2.4—25Gy). Those 94 (45%) patients who received WBRT had a median
number of 5 (range 1–100) MBM and were treated with median 10 (range 2–22) fractions of 3Gy (1.64–7.6Gy) to a median total dose of 30Gy (range 7.5–54Gy).

Regarding ST, 139 (66%) patients received IT, and 67 patients (33%) received TT (28% BRAFi, 72% BRAFi + MEKi). In addition to 77 BRAFwt patients (58% anti-PD-1, 33% anti-CTLA-4 and 8% anti-PD-1+anti-CTLA-4), 59 BRAFmut patients were treated with IT (49% anti-PD-1, 36% anti-CTLA-4 and 15% anti-PD1+anti-CTLA-4) (supplementary Table S2c).

4. Overall survival

4.1. All patients

At the last follow-up, 119 (57%) patients had died, and 88 (42%) patients were alive. The median OSRT was 11.7 (95% CI 8.9–14.4) months, and 1-year and 2-year OSRT rates were 49% and 32% (Table 1), respectively. There was a median OSRT benefit for patients treated with SRS compared with patients treated with WBRT (19.7 versus 7.1 months, \(P < .001 \)), considering that patients receiving SRS had significantly less MBM. Furthermore, there was a median OSRT benefit for patients treated with IT versus TT (14.8 versus 9.8 months, \(P = .03 \)). In particular, favourable OSRT rates were observed for anti-CTLA-4 + anti-PD-1 combined with SRS (Table 1; supplementary Figure S1).

Table 1
Median overall survival, 6-months and 1- and 2-year survival rates from beginning of radiotherapy of 206* patients stratified according to radiotherapy, systemic therapy and the combinations received.

<table>
<thead>
<tr>
<th>Treatment modalities</th>
<th>N</th>
<th>Median OSRT (95% CI) (months)</th>
<th>6-months (1-year; 2-year) survival rate</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>206</td>
<td>11.7 (8.9–14.4)</td>
<td>72% (49%; 32%)</td>
<td><0.001</td>
</tr>
<tr>
<td>SRS</td>
<td>114</td>
<td>19.7 (13.9–25.5)</td>
<td>81% (68%; 43%)</td>
<td></td>
</tr>
<tr>
<td>WBRT</td>
<td>92</td>
<td>7.1 (5.9–8.3)</td>
<td>61% (25%; 18%)</td>
<td></td>
</tr>
<tr>
<td>Immunotherapy</td>
<td>137</td>
<td>14.8 (9.9–19.7)</td>
<td>73% (56%; 38%)</td>
<td>.03</td>
</tr>
<tr>
<td>Targeted therapy</td>
<td>68</td>
<td>9.8 (7.8–11.7)</td>
<td>71% (38%; 21%)</td>
<td></td>
</tr>
<tr>
<td>SRS + Immunotherapy</td>
<td>87</td>
<td>21.0 (12.9–29.1)</td>
<td>81% (69%; 46%)</td>
<td>.23</td>
</tr>
<tr>
<td>SRS + Targeted therapy</td>
<td>27</td>
<td>12.9 (9.1–16.7)</td>
<td>82% (65%; 34%)</td>
<td></td>
</tr>
<tr>
<td>WBRT + Immunotherapy</td>
<td>51</td>
<td>7.1 (5.1–9.1)</td>
<td>59% (33%; 24%)</td>
<td>.55</td>
</tr>
<tr>
<td>WBRT + Targeted therapy</td>
<td>40</td>
<td>7.0 (3.5–10.4)</td>
<td>63% (18%; 13%)</td>
<td></td>
</tr>
<tr>
<td>anti-CTLA-4</td>
<td>47</td>
<td>11.2 (7.7–14.6)</td>
<td>70% (45%; 33%)</td>
<td>.23</td>
</tr>
<tr>
<td>anti-PD-1</td>
<td>75</td>
<td>17.6 (14.1–21.2)</td>
<td>73% (60%; 34%)</td>
<td></td>
</tr>
<tr>
<td>anti-CTLA-4 + anti-PD-1</td>
<td>15</td>
<td>not yet reached</td>
<td>79% (79%; 79%)</td>
<td></td>
</tr>
<tr>
<td>BRAFi mono</td>
<td>19</td>
<td>8.9 (5.4–12.4)</td>
<td>74% (24%; 6%)</td>
<td>.30</td>
</tr>
<tr>
<td>BRAFi + MEKi</td>
<td>48</td>
<td>9.8 (6.3–13.2)</td>
<td>70% (42%; 28%)</td>
<td></td>
</tr>
<tr>
<td>SRS + anti-PD1</td>
<td>52</td>
<td>21.0 (–)</td>
<td>77% (70%; 38%)</td>
<td>.11</td>
</tr>
<tr>
<td>SRS + anti-CTLA</td>
<td>30</td>
<td>20.5 (–)</td>
<td>87% (65%; 47%)</td>
<td></td>
</tr>
<tr>
<td>SRS + anti-PD1 + anti-CTLA</td>
<td>5</td>
<td>Not yet reached</td>
<td>100% (100%; not reached)</td>
<td></td>
</tr>
<tr>
<td>SRS + BRAFi mono</td>
<td>6</td>
<td>8.9 (–)</td>
<td>83% (50%; not reached)</td>
<td></td>
</tr>
<tr>
<td>SRS + BRAFi + MEKi</td>
<td>21</td>
<td>19.7 (–)</td>
<td>81% (70%; 44%)</td>
<td></td>
</tr>
<tr>
<td>WBRT + anti-PD1</td>
<td>24</td>
<td>7.1 (–)</td>
<td>66% (38%; 22%)</td>
<td>.07</td>
</tr>
<tr>
<td>WBRT + anti-CTLA</td>
<td>17</td>
<td>4.5</td>
<td>41% (8%; 8%)</td>
<td></td>
</tr>
<tr>
<td>WBRT + anti-PD1 + anti-CTLA</td>
<td>10</td>
<td>Not yet reached</td>
<td>70% (70%; 70%)</td>
<td></td>
</tr>
<tr>
<td>WBRT + BRAFi mono</td>
<td>13</td>
<td>7.4 (–)</td>
<td>69% (15%; 8%)</td>
<td></td>
</tr>
<tr>
<td>WBRT + BRAFi + MEKi</td>
<td>27</td>
<td>6.7</td>
<td>61% (19%; not reached)</td>
<td></td>
</tr>
</tbody>
</table>

SRS stereotactic radiosurgery; WBRT whole-brain radiation therapy; CI, confidence interval; OSRT, overall survival from beginning of radiotherapy; BRAFi, v-Raf murine sarcoma viral oncogene homolog B; BRAFi, BRAF inhibitor; MEKi, mitogen activated protein kinase inhibitor; CTLA, cytotoxic T-lymphocyte-associated protein; PD1, programmed cell death protein 1.

*Numeral discrepancies to the total number of patients represent missing data.

The univariate analysis of baseline characteristics for OSRT (Table 2) revealed age < 60 years, ECOG PS of 0–1, ≤3 MBM, absence of neurological symptoms and presence of extracerebral metastases to be significantly associated with a better OSRT.

In the multivariate analysis, age, ECOG PS, BRAFmut and presence of extracerebral metastases proved to be associated with a prolonged OSRT (Table 2).

4.2. BRAFmut patients

Supplementary Table 2d compares pretreatment characteristics of the BRAFmut patients treated with IT or TT. Subanalysis of BRAFmut patients stratified by the type of ST combined with RT revealed a difference of median OSRT between IT and TT (not yet reached versus 9.8 months; \(P < .001 \)). The 1-year and 2-year OSRT rates were 71% and 61%, if treated with IT compared with 38% and 21%, respectively, if treated with TT (\(P < .001 \)) (supplementary Table S3). The superiority of IT over TT was demonstrated for SRS and WBRT (supplementary Figure S2).

4.3. Sequencing of radiation and systemic therapy

Compared with administration of TT solely before RT, we observed a significant median OSRT benefit for patients who received TT after RT or who started TT...
before RT and continued thereafter (5.1 versus 9.8 and 12.2 months, respectively; \(P \leq 0.03 \)) irrespective of SRS and WBRT (supplementary Table S4; Fig. 1). No clear trend was found for the sequence of IT and RT.

4.4. Toxicity

Toxicities following ST were documented in 54 (26%) patients (supplementary Table S5-S6). The most frequent toxicities were hepatitis, pruritus and colitis. CTCAE grade 3/4 toxicities occurred in 12 (5.7%) of these patients, including hepatitis (\(N = 4 \)) and colitis (\(N = 4 \)).

Intracerebral oedema was documented in 13 (6%) patients (4 after SRS and 9 after WBRT) and intracerebral bleeding in 19 (9%) patients (8 after SRS and 11 after WBRT). Radionecrosis was observed in 4 (2%) patients treated with SRS and IT. Following WBRT, 9 patients treated with IT and 4 patients treated with TT developed skin toxicity, including dermatitis (\(N = 13 \)) and alopecia (\(N = 10 \)). CTCAE grade 3/4 neurological symptoms were not observed (supplementary Table S7).

5. Discussion

This retrospective study represents a real-life cohort of patients with MBM treated in German Skin Cancer Centres with a median age of 60 years, 70% of patients with more than one MBM, 80% of patients in ECOG PS 0-1, 90% of patients with extracerebral metastases and one-third of patients with increased tumour markers (S100 and LDH) before radiation.

Consistent with other retrospective studies on the efficacy and safety of combining RT and ST, the majority of patients were male, and the frequency of BRAFmut (62%) was within the expected range (45%-66%) [20-22,24,25]. Known prognostic factors for OS such as age, performance status, number of MBM, neurological symptoms, extracerebral metastases as well as BRAFmut were confirmed by our analyses with the exception that the presence of extracerebral metastases was associated with superior OS [20-23]. The conflicting data may be explained by generally small numbers of patients without extracerebral metastases [20,21,23,26]. Furthermore, brain MRI monitoring may be more
frequent in patients with extracerebral metastases, i.e. MBM may be detected earlier. Of particular interest in this context is the recent preclinical study in a melanoma tumour transplantation model with intracranial plus extracranial tumour, mimicking the clinically observed coexistence of metastases inside and outside the brain [27]. The data indicate that in the context of extracranial disease, anti-PD-1/anti-CTLA-4 treatment increases intratumoural CD8\(^+\) T cells in the brain through peripheral expansion of effector CD8\(^+\) T cells and potentiation of their trafficking to intracranial tumours via up-regulation of T cell entry receptors on the tumour vasculature. Therefore, the coexistence of metastases inside and outside the brain may be a survival advantage which probably depends on the tumour burden and localisation [28]. In our study, this phenomenon was also observed in MBM treated with TT suggesting immunologic effects of BRAFi ± MEKi as well (supplementary Table S8).

Previous retrospective series varied in terms of endpoints, patient characteristics, medications, radiation protocols, sequencing and timing of RT plus ST making a direct comparison difficult. Besides, their findings referred mainly to patients treated with SRS. However, WBRT combined with ST, in particular with IT, is a considerable option for patients with multiple MBM having a poor prognosis [29]. Therefore, we also included 94 patients treated with a combination of WBRT and ST, with the majority having >3 MBM. Their median OS\(_{RT}\) was 7.1 months, and the 1-year and 2-year survival rates were 25% and 18%, respectively. Taking into account a historical median OS of 2–4 months for WBRT alone [1,30], the combination of WBRT and ST appears to be a beneficial treatment strategy. In this context, protection against neurocognitive dysfunction associated with WBRT is gaining relevance [31]. Moreover, alternative approaches such as SRS for multiple brain metastases should be taken into account [32]. Interestingly, data of a recent retrospective study suggest that combining an upfront and repeated direct control of MBM by SRS and a ST with TT or IT is a way to keep MBM under control and prevent neurocognitive decline [21].

Patients treated with SRS and ST in our study experienced a median OS\(_{RT}\) of 19.7 months. The majority had ≤3 MBM. Based on a median OS of 5 months for SRS alone [33], the combination SRS plus ST results in a significant prolongation of survival. Patients treated with IT appeared to benefit most, in particular in combination with SRS (median OS\(_{RT}\) of 21.0 months). This observation affirms other retrospective findings. Considering anti-PD-1 combined with SRS, median OS
rates of 20.4 months ($N = 11$), 11.8 months ($N = 19$) and 12.3 months ($N = 11$), respectively, have been published for small cohorts [20–22]. Reasons for data discrepancies may be different SRS and IT protocols, different timing of RT and ST and low patient numbers.

In our study, the best survival was seen in patients treated with anti-PD-1 plus anti-CTLA-4 or anti-PD-1 alone combined with SRS with 6-month survival rates of 100% and 77%, respectively, and 12-month survival rates of 100% and 70%, respectively (Table 1). In a recently published phase II trial [34], treatment of patients with asymptomatic MBM with anti-PD-1 nivolumab plus anti-CTLA-4 ipilimumab or with nivolumab alone achieved a 6-month survival rate of 78% and 68%, respectively. In a second phase II study [8], patients with at least one asymptomatic MBM received nivolumab plus ipilimumab. Fifty-two percent of patients had one target lesion. In an initial assessment of OS, the 6-month and 9-month survival rates were 92.3% and 82.8%, respectively, and the estimated 12-month survival rate was 81.5%. These data suggest that the survival of patients treated with IT in combination with SRS may exceed the survival of patients treated with IT alone. However, we have to bear in mind that the populations in these studies differ in several aspects. Furthermore, a limited number of patients treated with anti-PD-1 plus anti-CTLA-4 combined with SRS were included in our study because of its approval in Europe 2016. Prospective studies investigating anti-PD-1 plus anti-CTLA-4 or anti-PD-1 alone combined with SRS are warranted. Indeed, NRG Oncology is planning a study that will investigate early SRS in the setting of immune checkpoint inhibitors versus salvage SRS for non-responders [3].

In our study, patients treated with SRS and TT had a median OS$_{RT}$ of 12.9 months, with BRAFi + MEKi achieving the best results (19.7 months). In previous studies on combining SRS and TT, the median OS ranged from 7.2 to 17.8 months [20,35–37]. For this combination, the sequence of treatment modalities appears to play a crucial role. A significant OS$_{RT}$ benefit was observed for patients who received BRAFi-/MEKi after RT or who started BRAFi-/MEKi before radiation and continued thereafter compared with patients who received BRAFi-/MEKi solely before RT (10.5 versus 5.1 months). Further evidence is provided by recent studies showing a better outcome in patients receiving BRAFi-/MEKi after SRS [21,36,38]. Hecht et al. [39] reported that interrupting treatment with the BRAFi vemurafenib before radiation was associated with a longer survival compared with concurrent treatment. The sequence of IT and SRS or WBRT did not appear to play a relevant role. This is in line with Qian et al. [24] who found a superiority of IT within 4 weeks of SRS, whereas the sequence did not have any influence on OS. However, IT following SRS was significantly superior in terms of OS in a case series including 56 patients [21]. Given the current inconsistent data, sequencing of IT and RT should be the subject of future investigations.

Our findings also demonstrate a prolonged survival for BRAFmut patients. One may speculate that patients with BRAFmut MBM have more treatment options with IT and TT. The literature provides conflicting data on the significance of the BRAF status as a prognostic factor [25,35,36]. Sperduto et al. [40] reported higher median OS rates for BRAFmut patients compared with BRAFwt patients in contrast to Ly et al. [35].

Our subgroup analysis showed a significant OS$_{RT}$ advantage for BRAFmut patients receiving RT combined with IT (1-year and 2-year OS$_{RT}$ rates of 71% and 61%) compared with RT combined with TT (1-year and 2-year OS$_{RT}$ rates of 38% and 21%). One may attribute this result to a poorer outcome by BRAFi administration or/and the emergence of BRAFi resistance prior to radiation. However, a reliable comparison of anti-PD-1-/anti-CTLA-4 versus BRAF-/MEKi following radiation is not feasible because of small or unequal patient numbers. The question of the optimal therapy sequence, in particular when combining BRAFi-/MEKi with RT, should be the subject of prospective clinical studies.

Of importance, our data demonstrate that the combination of IT or TT with SRS or WBRT is associated with favourable survival outcomes without increased toxicity within the considered follow-up time which is supported by the majority of previous studies [20,22,23]. Unexpected toxicity was not found. Severe adverse drug reactions were documented in 5.7% of patients and mainly affected the liver and colon. Overall, the frequency of adverse events following ST appears to be low, and toxicity following RT was within reported limits [20–22,41]. Neurocognitive dysfunction was not recorded. However, taking into account the prolonged OS after WBRT, monitoring and preservation of neurocognitive function will be mandatory. Oedema and haemorrhage of MBM following RT were documented in 6% and 9% of patients, respectively. Gaudy-Marqueste et al. [42] found an increase in preexisting oedema in 4.7% and haemorrhage in 6.3% of patients. The incidence of haemorrhage associated with SRS alone was 2% in a study by Minniti et al. [43]. Taking into account the high propensity for spontaneous haemorrhage in MBM [44], the haemorrhage rates in our study appear to be low.

Patients receiving ST concurrent with RT may have an increased risk of radionecrosis [18,19]. However, the majority of retrospective analyses suggest that combining SRS with ST does not increase toxicity including radionecrosis [20–22]. In our study, radionecrosis after SRS and ST was documented in 2% of patients. It is known that radionecrosis may occur several months or years after SRS [45]. After a median follow-up of 17.2 months, Kohutek et al. found radionecrosis in 25.8% of brain
metastases of different tumour types (including 22.9% MBM) treated with SRS alone [41]. Considering a median follow-up of 7.3 months from the start of radiation in our study, the incidence of radionecrosis may increase with time. A detailed radiological investigation is ongoing, with a longer follow-up, in particular in anti-PD-1-treated patients [21].

Our results are limited by the retrospective design of the study. Data were contributed by 14 Skin Cancer Centres with different imaging techniques and non-uniform RT protocols. Current tumour markers (S100 and LDH) were not provided in about 30% of patients. Patients were included regardless of received systemic or local therapies prior to or after the study interval. Altogether, these aspects caused pretreatment, treatment and posttreatment heterogeneity and may have introduced a recall or selection bias and potentially confounded the measured survival outcomes. Given the limitations of this retrospective study, future prospective studies are warranted.

However, this study supports previous findings on synergistic effects of SRS and active systemic agents. It also reports on the efficacy and safety of combining WBRT with ST. In addition, it provides clinically relevant data on the impact of the BRAFmut status, types of RT and ST and their sequence on survival. For patients with MBM, active systemic agents have only recently been established, and many questions currently remain unanswered. However, our results provide approaches for future investigations. Altogether, MBM still present a substantial unmet medical need that should be addressed by further preclinical research and prospective clinical studies focussing on brain-specific resistance mechanisms and new treatment strategies.

Funding

This work was supported by the National Center for Tumor Diseases (NCT Program and Infrastructure Grant).

Conflict of interest statement

R. R. received Honoraria from Novartis and Amgen, reimbursement of travel/accommodations expenses from Bristol-Myers Squibb and Amgen.

A.F. serves as consultant to Roche, Novartis, MSD, received travel grants from Roche, Novartis, BMS and speaker fees from Roche, Novartis, BMS, MSD.

C.B. has received speaker’s fees and/or advisor’s honoraria and/or travel support by Amgen, AstraZeneca, BMS, Merck, MSD, Novartis, Pierre Fabre, Regeneron, Sanofi-Aventis and Roche.

J.U. is on the advisory board or has received honoraria and travel support from Amgen, BMS, GSK, LeoPharma, MSD, Novartis, Pierre Fabre and Roche.

R.G. received Honoraria from Almirall Hermal, Amgen, AstraZeneca, Bristol-Myers Squibb, Incyte, Leo Pharma, Merck Serono, MSD, Novartis, Pierre Fabre, Pfizer, Roche and SUN, research funding from Johnson & Johnson, Novartis and Pfizer and travel & accommodations support from Bristol-Myers Squibb, Merck Serono, Pierre Fabre and Roche.

P.T. has received speaker’s honoraria from BMS, Novartis and Roche, consultant’s honoraria from BMS, Merck, Novartis and Roche and travel support from BMS and Roche.

D.D. has received speaker’s fees and/or advisor’s honoraria and/or travel support by Amgen, BMS, MSD, Novartis, Pierre Fabre, Sanofi-Aventis and Roche.

M.G. has received travel support and/or speaker’s fees and/or advisor’s honoraria by Roche, Bristol-Myers Squibb, GlaxoSmithKline, Novartis, MSD and Amgen.

S.B. is on the advisory board of Amgen.

F.M. has received travel support or/and speaker’s fees or/and advisor’s honoraria by Novartis, Roche, BMS, MSD and Pierre Fabre and research funding from Novartis and Roche.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.ejca.2018.12.023.

References

