Advertisement

Common genetic variants contribute to incomplete penetrance: evidence from cancer-free BRCA1 mutation carriers

Published:December 11, 2018DOI:https://doi.org/10.1016/j.ejca.2018.10.022

      Highlights

      • The study analyzed gene variation between pairs of cancer-unaffected and -affected familial members inherited with the same mutations in BRCA1, and observed the presence of a set of common “beneficial” variants enriched in the cancer-unaffected group. The study highlights that the beneficial variants counterpart the oncogenic effects of BRCA1 mutation, contributing to incomplete penetrance.

      Abstract

      Purpose

      The presence of pathogenic germline mutation in BRCA1 gene is considered as the most penetrant genetic predisposition for breast cancer. However, a portion of BRCA1 mutation carriers never develops breast cancer throughout their lifetime. This phenomenon is called incomplete penetrance. Genetic factor is proposed to contribute to this phenomenon, but the details regarding the genetic factor remain elusive. BRCA1 mutations were inherited from the ancestors of the mutation carrier families during human evolution, and their presence is a consistent threat to the survival of the mutation carrier population. In the present study, we hypothesize that evolution could positively select genetic components in the mutation carrier population to suppress the oncogenesis imposed by the predisposition.

      Experimental design

      To test our hypothesis, we used whole exome sequencing to compare germline variation of all genes in pairs of breast cancer–unaffected and breast cancer–affected BRCA1 mutation carriers, each pair was from the same family carrying the same BRCA1 mutation.

      Results

      We identified a group of ‘beneficial’ variants enriched in the breast cancer–unaffected carrier group. These were the common variants in human population distributed in multiple genes involved in multiple functionally important pathways. We found a single-nucleotide polymorphism, rs3735400 located in ANLN gene, which plays an essential role in controlling cytokinesis and is often found to be overexpressed in cancer. The carriers of this variant had lower cumulative risk of developing breast cancer; overexpression of the variant-containing ANLN decreased ANLN nuclear localization suppressed expression of the variant-containing ANLN, and decreased the cellular proliferation respectively.

      Conclusion

      Our findings support our hypothesis that common genetic variants can be evolutionarily selected in BRCA1 mutation carrier population to counterpart the oncogenic effects imposed by mutation predisposition in BRCA1, contributing to the incomplete penetrance.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to European Journal of Cancer
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Penetrance Ott J.
        Analysis of human genetic linkage. Revised Edition. The John Hopkins University Press, Baltimore1991: 146-164p
        • Hall J.M.
        • Lee M.K.
        • Newman B.
        • Morrow J.E.
        • Anderson L.A.
        • Huey B.
        • et al.
        Linkage of early-onset familial breast cancer to chromosome 17q21.
        Science. 1990; 250: 1684-1689
        • Narod S.A.
        • Feunteun J.
        • Lynch H.T.
        • Watson P.
        • Conway T.
        • Lynch J.
        • et al.
        Familial breast-ovarian cancer locus on chromosome 17q12-q23.
        Lancet. 1991; 388: 82-83
        • Miki Y.
        • Swensen J.
        • Shattuck-Eidens D.
        • Futreal P.A.
        • Harshman K.
        • Tavtigian S.
        • et al.
        A strong candidate for the breast and ovarian cancer susceptibility gene BRCA1.
        Science. 1994; 266: 66-71
        • Chen S.
        • Parmigiani G.
        Meta-analysis of BRCA1 and BRCA2 penetrance.
        J Clin Oncol. 2007; 25: 1329-1333
        • Antoniou A.
        • Pharoah P.D.
        • Narod S.
        • Risch H.A.
        • Eyfjord J.E.
        • Hopper J.L.
        • et al.
        Average risks of breast and ovarian cancer associated with BRCA1 or BRCA2 mutations detected in case series unselected for family history: a combined analysis of 22 studies.
        Am J Hum Genet. 2003; 72: 1117-1130
        • Pavlicek A.
        • Noskov V.N.
        • Kouprina N.
        • Barrett J.C.
        • Jurka J.
        • Larionov V.
        Evolution of the tumor suppressor BRCA1 locus in primates: implications for cancer predisposition.
        Hum Mol Genet. 2004; 13: 2737-2751
        • Caulin A.F.
        • Maley C.C.
        Peto's Paradox: evolution's prescription for cancer prevention.
        Trends Ecol Evol. 2011; 26: 175-182
        • Roche B.
        • Hochberg M.E.
        • Caulin A.F.
        • Maley C.C.
        • Gatenby R.A.
        • Misse D.
        • et al.
        Natural resistance to cancers: a Darwinian hypothesis to explain Peto's paradox.
        BMC Canc. 2012; 12: 387-391
        • Seluanov A.
        • Hine C.
        • Bozzella M.
        Distinct tumor suppressor mechanisms evolve in rodent species that differ in size and lifespan.
        Aging Cell. 2008; 7: 813-823
        • Nagase H.
        • Bryson S.
        • Cordell H.
        • Kemp C.J.
        • Fee F.
        • Balmain A.
        Distinct genetic loci control development of benign and malignant skin tumours in mice.
        Nat Genet. 1995; 10: 424-429
        • Pharoah P.D.
        • Antoniou A.
        • Bobrow M.
        • Zimmern R.L.
        • Easton D.F.
        • Ponder B.A.
        Polygenic susceptibility to breast cancer and implications for prevention.
        Nat Genet. 2002; 31: 33-36
        • Li G.M.
        Mechanisms and functions of DNA mismatch repair.
        Cell Res. 2008; 18: 85-98
        • Takahashi M.
        • Shimodaira H.
        • Andreutti-Zaugg C.
        • Iggo R.
        • Kolodner R.D.
        • Ishioka C.
        Functional analysis of human MLH1 variants using yeast and in vitro mismatch repair assays.
        Cancer Res. 2007; 67: 4595-4604
        • Xie Y.
        • Yang H.
        • Cunanan C.
        • Okamoto K.
        • Shibata D.
        • Pan J.
        • et al.
        Deficiencies in mouse Myh and Ogg1 result in tumor predisposition and G to T mutations in codon 12 of the K-ras oncogene in lung tumors.
        Cancer Res. 2004; 64: 3096-3102
        • Hung R.J.
        • Hall J.
        • Brennan P.
        • Boffetta P.
        Genetic polymorphisms in the base excision repair pathway and cancer risk: a HuGE review.
        Am J Epidemiol. 2005; 162: 925-942
        • Langmead B.
        • Salzberg S.L.
        Fast gapped-read alignment with Bowtie2.
        Nat Methods. 2012; 9: 357-359
        • McKenna A.
        • Hanna M.
        • Banks E.
        • Sivachenko A.
        • Cibulskis K.
        • Kernytsky A.
        • et al.
        The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data.
        Genome Res. 2010; 20: 1297-1303
        • Wang K.
        • Li M.
        • Hakonarson H.
        ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data.
        Nucleic Acids Res. 2010; 38: e164
        • Adzhubei I.A.
        • Schmidt S.
        • Peshkin L.
        • Ramensky V.E.
        • Gerasimova A.
        • Bork P.
        • et al.
        A method and server for predicting damaging missense mutations.
        Nat Methods. 2010; 7: 248-249
        • Kumar P.
        • Henikoff S.
        • Ng P.C.
        Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm.
        Nat Protoc. 2009; 4: 1073-1081
        • Suzuki C.
        • Daigo Y.
        • Ishikawa N.
        • Kato T.
        • Hayama S.
        • Ito T.
        • et al.
        ANLN plays a critical role in human lung carcinogenesis through the activation of RHOA and by involvement in the phosphoinositide 3-kinase/AKT pathway.
        Cancer Res. 2005; 65: 11314-11325
        • Breslow N.E.
        • Day N.E.
        Statistical methods in cancer Research: volume 1: analysis of case control studies.
        International Agency for Research in Cancer, Lyon, France1980
        • Therneau T.M.
        • Li H.
        Computing the cox model for case cohort designs.
        Lifetime Data Anal. 1999; 5: 99-112
        • Antoniou A.C.
        • Wang X.
        • Fredericksen Z.S.
        • McGuffog L.
        • Tarrell R.
        • Sinilnikova O.M.
        • et al.
        A locus on 19p13 modifies risk of breast cancer in BRCA1 mutation carriers and is associated with hormone receptor-negative breast cancer in the general population.
        Nat Genet. 2010; 42: 885-892
        • Couch F.J.
        • Gaudet M.M.
        • Antoniou A.C.
        • Ramus S.J.
        • Kuchenbaecker K.B.
        • Soucy P.
        • et al.
        Common variants at the 19p13.1 and ZNF365 loci are associated with ER subtypes of breast cancer and ovarian cancer risk in BRCA1 and BRCA2 mutation carriers.
        Cancer Epidemiol Biomark Prev. 2012; 21: 645-657
        • Stevens K.N.
        • Fredericksen Z.
        • Vachon C.M.
        • Wang X.
        • Margolin S.
        • Lindblom A.
        • et al.
        19p13.1 is a triple-negative-specific breast cancer susceptibility locus.
        Cancer Res. 2012; 72: 1795-1803
        • Couch F.J.
        • Wang X.
        • McGuffog L.
        • Lee A.
        • Olswold C.
        • Kuchenbaecker K.B.
        • et al.
        Genome-wide association study in BRCA1 mutation carriers identifies novel loci associated with breast and ovarian cancer risk.
        PLoS Genet. 2013; 9: e1003212
        • Doherty J.A.
        • Rossing M.A.
        • Cushing-Haugen K.L.
        • Chen C.
        • Van Den Berg D.J.
        • Wu A.H.
        • et al.
        ESR1/SYNE1 polymorphism and invasive epithelial ovarian cancer risk: an ovarian cancer association consortium study.
        Cancer Epidemiol Biomark Prev. 2010; 19: 245-250
        • Field C.M.
        • Alberts B.M.
        Anillin, a contractile ring protein that cycles from the nucleus to the cell ccortex.
        J Cell Biol. 1995; 131: 165-178
        • Anderson T.W.
        Introduction to mmultivariate statistical analysis.
        3rd ed. Wiley, 2004
        • Piekny A.J.
        • Glotzer M.
        Anillin is a scaffold protein that links RhoA, actin, and myosin during cytokinesis.
        Curr Biol. 2008; 18: 30-36
        • Wang D.
        • Chadha G.K.
        • Feygin A.
        • Ivanov A.I.
        F-actin binding protein, anillin, regulates integrity of intercellular junctions in human epithelial cells.
        Cell Mol Life Sci. 2015; 72: 3185-3200
        • Oegema K.
        • Savoian M.S.
        • Mitchison T.J.
        • Field C.M.
        Functional analysis of a human homologue of the Drosophila actin binding protein anillin suggests a role in cytokinesis.
        J Cell Biol. 2000; 150: 539-552
        • Hickson G.R.
        • O'Farrell P.H.
        Anillin: a pivotal organizer of the cytokinetic machinery.
        Biochem Soc Trans. 2008; 36: 439-441
        • D'Avino P.P.
        How to scaffold the contractile ring for a safe cytokinesis - lessons from Anillin-related proteins.
        J Cell Sci. 2009; 122: 1071-1079
        • Chen A.
        • Akhshi T.K.
        • Lavoie B.D.
        • Wilde A.
        Importin β2 mediates the spatio-temporal regulation of anillin through a noncanonical nuclear localization signal.
        J Biol Chem. 2015; 290: 13500-13509
        • Hall P.A.
        • Todd C.B.
        • Hyland P.L.
        • McDade S.S.
        • Grabsch H.
        • Dattani M.
        • et al.
        The septin-binding protein anillin is overexpressed in diverse human tumors.
        Clin cancer res. 2005; 11: 6780-6786
        • Gbadegesin R.A.
        • Hall G.
        • Adeyemo A.
        • Hanke N.
        • Tossidou I.
        • Burchette J.
        • et al.
        Mutations in the gene that encodes the F-actin binding protein anillin cause FSGS.
        J Am Soc Nephrol. 2014; 25: 1991-2002
        • Zhou W.
        • Wang Z.
        • Shen N.
        • Pi W.
        • Jiang W.
        • Huang J.
        • et al.
        Knockdown of ANLN by lentivirus inhibits cell growth and migration in human breast cancer.
        Mol Cell Biochem. 2015; 398: 11-19
        • Tomlinson G.E.
        • Chen T.T.
        • Stastny V.A.
        • Virmani A.K.
        • Spillman M.A.
        • Tonk V.
        • et al.
        Characterization of a breast cancer cell line derived from a germ-line BRCA1 mutation carrier.
        Cancer Res. 1998; 58: 3237-3242
        • Gazdar A.F.
        • Kurvari V.
        • Virmani A.
        • Gollahon L.
        • Sakaguchi M.
        • Westerfield M.
        • et al.
        Characterization of paired tumor and non-tumor cell lines established from patients with breast cancer.
        Int J Canc. 1998; 78: 766-774
        • Schwartz M.L.B.
        • Williams M.S.
        • Murray M.F.
        Adding protective genetic variants to clinical reporting of genomic screening results: restoring balance.
        J Am Med Assoc. 2017; 317: 1527-1528
        • Antoniou A.C.
        • Sinilnikova O.M.
        • McGuffog L.
        • Healey S.
        • Nevanlinna H.
        • Heikkinen T.
        • et al.
        Common variants in LSP1, 2q35 and 8q24 and breast cancer risk for BRCA1 and BRCA2 mutation carriers.
        Hum Mol Genet. 2009; 18: 4442-4456
        • Ghoussaini M.
        • Pharoah P.D.
        • Easton D.F.
        Inherited genetic susceptibility to breast cancer: the beginning of the end or the end of the beginning?.
        Am J Pathol. 2013; 183: 1038-1051
        • Tan H.
        On the protective effects of gene SNPs against human cancer.
        EBioMedicine. 2018; 33: 4-5