Advertisement

Predictive biomarkers of response for immune checkpoint inhibitors in non–small-cell lung cancer

Published:December 04, 2018DOI:https://doi.org/10.1016/j.ejca.2018.11.002

      Highlights

      • At present, tumour PD-L1 expression is the only approved biomarker, albeit imperfect, used in clinical practice for PD-(L)1 blockade in NSCLC.
      • Tumour Mutational Burden may enter clinical practice as a biomarker to select patients who are potential candidates for dual immune blockade.
      • Several biomarker strategies specifically related to NSCLC are under investigation.
      • Tumour-related factors such as genetic alterations and tumour microenvironment play a crucial role and are relevant for a prediction role.
      • Factors related to the host immune system (peripheral blood biomarkers etc.) and their combination with other biomarkers will be the next future.

      Abstract

      Immune checkpoint blockade has been a pivotal development in the management of advanced non–small-cell lung cancer (NSCLC). Although durable antitumour activity and improved survival have been observed in a subset of patients, there is a need for additional predictive biomarkers to improve patient selection and avoid toxicity in potential non-responders. This review will address the use and limitations of tumour programmed death-ligand 1 expression as a predictive biomarker and review emerging biomarker strategies specifically related to NSCLC including genetic alterations (tumour mutation burden, loss and gain activated mutations), tumour-related factors (tumour microenvironment) and factors related to the host immune system. Novel approaches in biomarker detection such as peripheral blood monitoring will also be reviewed.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to European Journal of Cancer
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Brahmer J.R.
        • Reckamp K.L.
        • Baas P.
        • Crinò L.
        • Eberhardt W.E.
        • Poddubskaya E.
        • et al.
        Nivolumab versus docetaxel in advanced squamous-cell non-small-cell lung cancer.
        N Engl J Med. 2015; 373: 123-135
        • Borghaei H.
        • Paz-Ares L.
        • Horn L.
        • Spigel D.R.
        • Steins M.
        • Ready N.E.
        • et al.
        Nivolumab versus docetaxel in advanced nonsquamous non-small-cell lung cancer.
        N Engl J Med. 2015; 373: 1627-1639
        • Herbst R.S.
        • Baas P.
        • Kim D.W.
        • Felip E.
        • Pérez-Gracia J.L.
        • Han J.Y.
        • et al.
        Pembrolzumab versus docetaxel for previously treated, PD-L1 positive, advanced non-small-celllung cancer (KEYNOTE-010): a randomised controlled trial.
        Lancet. 2016 Apr 9; 387: 1540-1550
        • Rittmeyer A.
        • Barlesi F.
        • Waterkamp D.
        • Park K.
        • Ciardiello F.
        • von Pawel J.
        • et al.
        Atezolizumab versus docetaxel in patients with previously treated non-small-cell lung cancer (OAK): a phase 3, open-label, multicentre randomised controlled trial.
        Lancet. 2017 Jan 21; 389: 255-265
        • Topalian S.L.
        • Hodi F.S.
        • Brahmer J.R.
        • Gettinger S.N.
        • Smith D.C.
        • McDermott D.F.
        • et al.
        Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. The report of this large early-phase clinical study demonstrates a role for anti-PD1 therapy in NSCLC, melanoma and kidney cancer, but not in prostate cancer or CRC; it also provides the first demonstration of PDL1 IHC as a potential biomarker for anti-PD1 therapy.
        N Engl J Med. 2012; 366: 2443-2454
        • Mukherji D.
        • Jabbour M.N.
        • Saroufim M.
        • Temraz S.
        • Nasr R.
        • Charafeddine M.
        • et al.
        Programmed death-Ligand 1 expression in muscle-Invasive bladder cancer cystectomy specimens and lymph node metastasis: a reliable treatment selection biomarker?.
        Clin Genitourin Canc. 2016; 14: 183-187
        • Wimberly H.
        • Brown J.R.
        • Schalper K.
        • Haack H.
        • Silver M.R.
        • Nixon C.
        • et al.
        PD-L1expression correlates with tumor-infiltrating lymphocytes and response toneoadjuvant chemotherapy in Breast cancer.
        Cancer Immunol Res. 2015; 3: 326-332
        • Shaverdian N.
        • Lisberg A.E.
        • Bornazyan K.
        • Veruttipong D.
        • Goldman J.W.
        • Formenti S.C.
        • et al.
        Previous radiotherapy and the clinical activity and toxicity of pembrolizumab in the treatment of non -small-cell lung cancer: a secondary analysis of the KEYNOTE-001 phase 1 trial.
        Lancet Oncol. 2017 Jul; 18: 895-903https://doi.org/10.1016/S1470-2045(17)30380-7
        • Nguyen N.
        • Bellile E.
        • Thomas D.
        • McHugh J.
        • Rozek L.
        • Virani S.
        • et al.
        Tumor in filtrating lymphocytes and survival in patients with head and neck squamous cell carcinoma.
        Head Neck. 2016; 38: 1074-1084
        • Inoue Y.
        • Yoshimura K.
        • Mori K.
        • Kurabe N.
        • Kahyo T.
        • Mori H.
        • et al.
        Clinical significance of PD-L1 and PD-L2 copy number gains in non-small-cell lung cancer.
        Oncotarget. 2016 May 31; 7: 32113-32128
        • Van Allen E.M.
        • Golay H.G.
        • Liu Y.
        • Koyama S.
        • Wong K.
        • Taylor-Weiner A.
        • et al.
        Long-term benefit of PD-L1 blockade in lung cancer associated with JAK3 activation.
        Cancer Immunol Res. 2015 Aug; 3: 855-863
        • Topalian S.L.
        • Taube J.M.
        • Anders R.A.
        • Pardoll D.M.
        Mechanism-driven biomarkers to guide immune checkpoint blockade in cancer therapy.
        Nat Rev Cancer. 2016; 16: 275-287
        • Hirsch F.R.
        • McElhinny A.
        • Stanforth D.
        • Ranger-Moore J.
        • Jansson M.
        • Kulangara K.
        • et al.
        PD-L1 immunohistochemistry assays for lung cancer: results from phase 1 of the Blueprint PD-L1 IHC assay comparison Project.
        J Thorac Oncol. 2017 Feb; 12: 208-222
        • Tsao M.
        • Kerr K.
        • Yatabe Y.
        PL 03.03 – Blueprint 2: PD-L1 Immunohistochemistry Comparability Study in Real-Life, clinical samples. The Iaslc 18th world conference on lung cancer; 2017 Oct 15-18; Yokohama, Japan.
        J Thorac Oncol. 2018; 12: S1606
        • Chae Y.K.
        • Pan A.
        • Davis A.A.
        • Raparia K.
        • Mohindra N.A.
        • Matsangou M.
        • et al.
        Biomarkers for PD-1/PD-L1 blockade therapy in non-small-cell lung cancer: is PD-L1 expression a good marker for patient selection?.
        Clin Lung Canc. 2016; 17: 350-361
        • Gibney G.T.
        • Weiner L.M.
        • Atkins M.B.
        Predictive biomarkers for checkpoint inhibitor-based immunotherapy.
        Lancet Oncol. 2016 Dec; 17: e542-e551
        • Goldman J.V.
        • Antonia S.J.
        • Gettinger S.N.
        • Borghaei H.
        • Brahmer J.R.
        • Ready N.E.
        • et al.
        Nivolumab (N) plus ipilimumab (I) as first-line (1L) treatment for advanced (adv) NSCLC: 2-yr OS and long-term outcomes from CheckMate 012.
        J Clin Oncol. 2017; 35 (15_suppl, 9093-9093)https://doi.org/10.1200/JCO.2017.35.15_suppl.9093
        • Antonia S.
        • Goldberg S.B.†
        • Balmanoukian A.
        • Chaft J.E.
        • Sanborn R.E.
        • Gupta A.
        • et al.
        Safety and antitumour activity of durvalumab plus tremelimumab in non-small cell lung cancer: a multicentre, phase 1b study.
        Lancet Oncol. 2016; 17: p299-p308
        • Passiglia F.
        • Bronte G.
        • Bazan V.
        • Natoli C.
        • Rizzo S.
        • Galvano A.
        • et al.
        PD-L1 expression as predictive biomarker in patients with NSCLC: a pooled analysis.
        Oncotarget. 2016; 7: 19738-19747
        • Snyder A.
        • Makarov V.
        • Merghoub T.
        • Yuan J.
        • Zaretsky J.M.
        • Desrichard A.
        • et al.
        Genetic basis for clinical response to CTLA-4 blockade in melanoma.
        N Engl J Med. 2014; 371: 2189-2199
        • Rizvi N.A.
        • Hellmann M.D.
        • Snyder A.
        • Kvistborg P.
        • Makarov V.
        • Havel J.J.
        • et al.
        Cancer immunology. Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer.
        Science. 2015; 348: 124-128
        • Le D.T.
        • Uram J.N.
        • Wang H.
        • Bartlett B.R.
        • Kemberling H.
        • Eyring A.D.
        • et al.
        PD-1 blockade in tumors with mismatch-repair deficiency.
        N Engl J Med. 2015 Jun 25; 372: 2509-2520
        • Yarchoan M.
        • Hopkins A.
        • Jaffee E.M.
        Tumor mutational burden and response rate to PD-1 inhibition.
        N Engl J Med. 2017 Dec 21; 377: 2500-2501https://doi.org/10.1056/NEJMc1713444
        • Stewart T.J.
        • Abrams S.I.
        How tumours escape mass destruction.
        Oncogene. 2008 Oct 6; 27: 5894-5903https://doi.org/10.1038/onc.2008.268
        • Rosenberg J.E.
        • Hoffman-Censits J.
        • Powles T.
        • van der H eijden M.S.
        • Balar A.V.
        • Necchi A.
        • et al.
        Atezolizumab in patients with locally advanced and metastatic urothelial carcinoma who have progressed following treatment with platinum-based chemotherapy: a single-arm, multicentre, phase 2 trial.
        Lancet. 2016; 387: 1909-1920
        • Feng Y.Y.
        • Griffith O.L.
        • Griffith M.
        Clinical implications of neoepitope landscapes for adult and pediatric cancers.
        Genome Med. 2017 Aug 31; 9: 77
        • Turajlic S.
        • Litchfield K.
        • Xu H.
        • Rosenthal R.
        • McGranahan N.
        • Reading J.L.
        • et al.
        Insertion-and-deletion-derived tumour-specific neoantigens and the immunogenic phenotype: a pan-cancer analysis.
        Lancet Oncol. 2017 Aug; 18: 1009-1021
        • Schrock A.
        • Sharma N.
        • Peled N.
        • Bufill J.
        • Srkalovic G.
        • Spigel D.
        • et al.
        MA14.01 Updated Dataset Assessing Tumor Mutation Burden (TMB) as a Biomarker for Response to PD-1/PD-L1 Targeted Therapies in Lung Cancer (LC).
        J Thorac Oncol. 2017; 12: S422
        • Kowanetz M.
        • Zou W.
        • Shames D.S.
        • Cummings C.
        • Rizvi N.
        • Spira A.I.
        • et al.
        Tumor mutation load assessed by FoundationOne (FM1) is associated with improved efficacy of atezolizumab (atezo) in patients with advanced NSCLC.
        Ann Oncol. 2016; 27: 77P
        • Campesato L.F.
        • Barroso-Sousa R.
        • Jimenez L.
        • Correa B.R.
        • Sabbaga J.
        • Hoff P.M.
        • et al.
        Comprehensive cancer-gene panels can be used to estimate mutational load and predict clinical benefit to PD-1 blockade in clinical practice.
        Oncotarget. 2015 Oct 27; 6: 34221-34227
        • Johnson D.B.
        • Frampton G.M.
        • Rioth M.J.
        • Yusko E.
        • Xu Y.
        • Guo X.
        • et al.
        Targeted next generation sequencing identifies markers of response to PD-1 blockade.
        Cancer Immunol Res. 2016 Nov; 4: 959-967
        • Goodman A.M.
        • Kato S.
        • Bazhenova L.
        • Patel S.P.
        • Frampton G.M.
        • Miller V.
        • et al.
        Tumor mutational burden as an independent predictor of response to immunotherapy in diverse cancers.
        Mol Canc Therapeut. 2017 Nov; 16: 2598-2608
        • Riaz N.
        • Havel J.J.
        • Makarov V.
        • Desrichard A.
        • Urba W.J.
        • Sims J.S.
        • et al.
        Tumor and microenvironment evolution during immunotherapy with nivolumab.
        Cell. 2017 Nov 2; 171 (e15): 934-949
        • McGranahan N.
        • Furness A.J.
        • Rosenthal R.
        • Ramskov S.
        • Lyngaa R.
        • Saini S.K.
        • et al.
        Clonal neoantigens elicit T cell immunoreactivity and sensitivity to immune checkpoint blockade.
        Science. 2016 Mar 25; 351: 1463-1469
      1. Peters S, Creelan B, Hellman MD, Socinski MA, Reck M, Bhagavatheeswaran P, et al. Impact of tumor mutation burden on the efficacy of first-line nivolumab in stage IV or recurrent non-small cell lung cancer: an exploratory analysis of CheckMate 026. 2017 AACR Annual Meeting. Abstract CT082. Presented April 3, 2017.

        • Rizvi H.
        • Sanchez-Vega F.
        • La K.
        • Chatila W.
        • Jonsson P.
        • Halpenny D.
        • et al.
        Molecular determinants of response to anti-programmed cell death (PD)-1 and anti-programmed death-ligand 1 (PD-L1) blockade in patients with non-small-cell lung cancer profiled with targeted next-generation sequencing.
        J Clin Oncol. 2018 Mar 1; 36: 633-641
        • Hellmann M.D.
        • Ciuleanu T.E.
        • Pluzanski A.
        • Lee J.S.
        • Otterson G.A.
        • Audigier-Valette C.
        • et al.
        Nivolumab plus ipilimumab in lung cancer with a high tumor mutational burden.
        N Engl J Med. 2018 May 31; 378: 2093-2104https://doi.org/10.1056/NEJMoa1801946
        • Roszik J.
        • Haydu L.E.
        • Hess K.R.
        • Oba J.
        • Joon A.Y.
        • Siroy A.E.
        • et al.
        Novel algorithmic approach predicts tumor mutation load and correlates with immunotherapy clinical outcomes using a defined gene mutation set.
        BMC Med. 2016 Oct 25; 14: 168
        • Chae Y.K.
        • Anker J.F.
        • Bais P.
        • Namburi S.
        • Giles F.J.
        • Chuang J.H.
        Mutations in DNA repair genes are associated with increased neo-antigen load and activated T cell infiltration in lung adenocarcinoma.
        Oncotarget. 2017 Dec 15; 9: 7949-7960
        • Chae Y.K.
        • Anker J.F.
        • Bais P.
        • Namburi S.
        • Giles F.J.
        • Chuang J.H.
        Mutations in DNA repair genes are associated with increased neo-antigen load and activated T cell infiltration in lung adenocarcinoma.
        Oncotarget. 2017 Dec 15; 9: 7949-7960https://doi.org/10.18632/oncotarget.23742. eCollection 2018 Jan 30
        • Chalmers Z.R.
        • Connelly C.F.
        • Fabrizio D.
        • Gay L.
        • Ali S.M.
        • Ennis R.
        • et al.
        Analysis of 100,000 human cancer genomes reveals the landscape of tumor mutational burden.
        Genome Med. 2017 Apr 19; 9: 34
        • Briggs S.
        • Tomlinson I.
        Germline and somatic polymerase ε and δ mutations define a new class of hypermutated colorectal and endometrial cancers.
        J Pathol. 2013 Jun; 230: 148-153
        • Vanderwalde A.
        • Spetzler D.
        • Xiao N.
        • Gatalica Z.
        • Marshall J.
        Microsatellite instability status determined by next-generation sequencing and compared with PD-L1 and tumor mutational burden in 11,348 patients.
        Cancer Med. 2018 Mar; 7: 746-756
        • Le D.T.
        • Durham J.N.
        • Smith K.N.
        • Wang H.
        • Bartlett B.R.
        • Aulakh L.K.
        • et al.
        Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade.
        Science. 2017 Jul 28; 357: 409-413
        • Overman M.J.
        • McDermott R.
        • Leach J.L.3
        • Lonardi S.
        • Lenz H.J.
        • Morse M.A.
        • et al.
        Nivolumab in patients with metastatic DNA mismatch repair-deficient or microsatellite instability-high colorectal cancer (CheckMate 142): an open-label, multicentre, phase 2 study.
        Lancet Oncol. 2017 Sep; 18: 1182-1191
        • Bouffet E.
        • Larouche V.
        • Campbell B.B.
        • D1 Merico
        • de Borja R.
        • Aronson M.
        • et al.
        Immune checkpoint inhibition for hypermutant glioblastoma multiforme resulting from germline biallelic mismatch repair deficiency.
        J Clin Oncol. 2016 Jul 1; 34: 2206-2211
        • Castro M.P.
        • Goldstein N.
        Mismatch repair deficiency associated with complete remission to combination programmed cell death ligand immune therapy in a patient with sporadic urothelial carcinoma: immunotheranostic considerations.
        J Immunother Cancer. 2015 Dec 15; 3: 58
        • Quail D.F.
        • Joyce J.A.
        Microenvironmental regulation of tumor progression and metastasis.
        Nat Med. 2013; 19: 1423-1437
        • Balkwill F.R.
        • Capasso M.
        • Hagemann T.
        The tumor microenvironment at a glance.
        J Cell Sci. 2012; 125: 5591
        • Zitvogel L.
        • Tesniere A.
        • Kroemer G.
        Cancer despite immunosurveillance: immuno selection and immuno subversion.
        Nat Rev Immunol. 2006; 6: 715
        • Fridman W.H.
        • Pagès F.
        • Sautès-Fridman C.
        • Galon J.
        The immune contexture in human tumours: impact on clinical outcome.
        Nat Rev Canc. 2012; 12: 298
        • Galon J.
        • Costes A.
        • Sanchez-Cabo F.
        • Kirilovsky A.
        • Mlecnik B.
        • Lagorce-Pagès C.
        • et al.
        Type, density, and location of immune cells within human colorectal tumors predict clinical outcome.
        Science. 2006; 313: 1960
        • Galon J.
        • Fridman W.-H.
        • Pagès F.
        The adaptive immunologic microenvironment in colorectal cancer: a novel perspective.
        Cancer Res. 2007; 67: 1883
        • Pagès F.
        • Berger A.
        • Camus M.
        • Sanchez-Cabo F.
        • Costes A.
        • Molidor R.
        • et al.
        Effector memory T cells, early metastasis, and survival in colorectal cancer.
        N Engl J Med. 2005; 353: 2654-2666
        • Erdag G.
        • Schaefer J.T.
        • Smolkin M.E.
        • Deacon D.H.
        • Shea S.M.
        • Dengel L.T.
        • et al.
        Immunotype and immunohistologic characteristics of tumor infiltrating immune cells are associated with clinical outcome in metastatic melanoma.
        Cancer Res. 2012; 72: 1070-1080
        • Azimi F.
        • Scolyer R.A.
        • Rumcheva P.
        • Moncrieff M.
        • Murali R.
        • McCarthy S.W.
        • et al.
        Tumor-infiltrating lymphocyte grade is an independent predictor of sentinel lymph node status and survival in patients with cutaneous melanoma.
        J Clin Oncol. 2012; 30: 2678-2683
        • Denkert C.
        • von Minckwitz G.
        • Darb-Esfahani S.
        • Lederer B.
        • Heppner B.I.
        • Weber K.E.
        • et al.
        Tumour-infiltrating lymphocytes and prognosis in different subtypes of breast cancer: a pooled analysis of 3771 patients treated with neoadjuvant therapy.
        Lancet Oncol. 2018; 19: 40-50
        • Yu X.
        • Zhang Z.
        • Wang Z.
        • Wu P.
        • Qiu F.
        • Huang J.
        Prognostic and predictive value of tumor-infiltrating lymphocytes in breast cancer: a systematic review and meta-analysis.
        Clin Transl Oncol. 2016; 18: 497-506
        • Zeng D.Q.
        • Yu Y.F.
        • Ou Q.Y.
        • Li X.Y.
        • Zhong R.Z.
        • Xie C.M.
        • et al.
        Prognostic and predictive value of tumor-infiltrating lymphocytes for clinical therapeutic research in patients with non-small cell lung cancer.
        Oncotarget. 2016; 7: 13765-13781
        • Donnem T.
        • Kilvaer T.K.
        • Andersen S.
        • Richardsen E.
        • Paulsen E.E.
        • Hald S.M.
        • et al.
        Strategies for clinical implementation of TNM-Immunoscore in resected nonsmall-cell lung cancer.
        Ann Oncol. 2016; 27: 225-232
        • Pagès F.
        • Mlecnik B.
        • Marliot F.
        • Bindea G.
        • Ou F.S.
        • Bifulco C.
        • et al.
        International validation of the consensus Immunoscore for the classification of colon cancer: a prognostic and accuracy study.
        Lancet. 2018 May 26; 391: 2128-2139https://doi.org/10.1016/S0140-6736(18)30789-X
        • Berghoff A.S.
        • Inan C.
        • Ricken G.
        • Widhalm G.
        • Dieckmann K.
        • Birner P.
        • et al.
        1324P Tumor-infiltrating lymphocytes (tils) and PD-L1 expression in Non–small cell lung cancer brain metastases (bm) and matched primary tumors (pt).
        Ann Oncol. 2014; 25: iv465-iv466
        • Schalper K.A.
        • Brown J.
        • Carvajal-Hausdorf D.
        • McLaughlin J.
        • Velcheti V.
        • Syrigos K.N.
        • et al.
        Objective measurement and clinical significance of TILs in non–small cell lung cancer.
        JNCI: J Natl Cancer Inst. 2015; 107 (dju435-dju435)
        • Granier C.
        • Vinatier E.
        • Colin E.
        • Mandavit M.
        • Dariane C.
        • Verkarre V.
        • et al.
        Multiplexed immunofluorescence analysis and quantification of intratumoral PD-1+ tim-3+ CD8+ T cells.
        JoVE. 2018 Feb 8; : 132https://doi.org/10.3791/56606
        • Parra E.R.
        • Behrens C.
        • Rodriguez-Canales J.
        • Lin H.
        • Mino B.
        • Blando J.
        • et al.
        Image analysis–based assessment of PD-L1 and tumor-associated immune cells density supports distinct intratumoral microenvironment groups in non–small cell lung carcinoma patients.
        Clin Canc Res. 2016; 22: 6278
        • Sahba AN S.
        • De Langen J.
        • Thunnissen E.
        Association of tumor and stroma PD-1, PD-L1, CD3, CD4 and CD8 expression with response to nivolumab treatment in NSCLC patients.
        Ann Oncol. 2017; 28: v22-v42https://doi.org/10.1093/annonc/mdx363; 2017
        • Gataa I.
        • Mezquita L.
        • Auclin E.
        • Le Moulec S.
        • Alemany P.
        • Kossai M.
        • et al.
        112PPathological evaluation of tumor infiltrating lymphocytes and the benefit of nivolumab in advanced non-small cell lung cancer (NSCLC).
        Ann Oncol. 2017; 28 (mdx363.028-mdx363.028)
        • Althammer S.
        • Steele K.
        • Rebelatto M.
        • Tan T.H.
        • Wiestler T.
        • Schmidt G.
        • et al.
        31st annual meeting and associated programs of the society for immunotherapy of cancer (SITC 2016): late breaking abstracts.
        J ImmunoTherapy Cancer. 2016; 4: 91
        • Chen H.-Y.
        • Yu S.-L.
        • Chen C.-H.
        • Chang G.-C.
        • Chen C.-Y.
        • Yuan A.
        • et al.
        A five-gene signature and clinical outcome in non–small-cell lung cancer.
        N Engl J Med. 2007; 356: 11-20
        • Gentles A.J.
        • Newman A.M.
        • Liu C.L.
        • Bratman S.V.
        • Feng W.
        • Kim D.
        • et al.
        The prognostic landscape of genes and infiltrating immune cells across human cancers.
        Nat Med. 2015; 21: 938-945
        • Chifman J.
        • Pullikuth A.
        • Chou J.W.
        • Bedognetti D.
        • Miller L.D.
        Conservation of immune gene signatures in solid tumors and prognostic implications.
        BMC Canc. 2016; 16: 911
        • Ji R.-R.
        • Chasalow S.D.
        • Wang L.
        • Hamid O.
        • Schmidt H.
        • Cogswell J.
        • et al.
        An immune-active tumor microenvironment favors clinical response to ipilimumab.
        Cancer Immunol Immunother. 2012; 61: 1019-1031
        • Bedognetti D.
        • Wang E.
        • Sertoli M.R.
        • Marincola F.M.
        Gene expression profiling in vaccine therapy and immunotherapy for cancer.
        Expet Rev Vaccine. 2010; 9: 555-565
        • Fehrenbacher L.
        • Spira A.
        • Ballinger M.
        • Kowanetz M.
        • Vansteenkiste J.
        • Mazieres J.
        • et al.
        Atezolizumab versus docetaxel for patients with previously treated non-small-cell lung cancer (POPLAR): a multicentre, open-label, phase 2 randomised controlled trial.
        Lancet. 2016; 387: 1837-1846
        • Kaplan D.H.
        • Shankaran V.
        • Dighe A.S.
        • Stockert E.
        • Aguet M.
        • Old L.J.
        • et al.
        Demonstration of an interferon γ-dependent tumor surveillance system in immunocompetent mice.
        Proc Natl Acad Sci U S A. 1998; 95: 7556-7561
        • Zaretsky J.M.
        • Garcia-Diaz A.
        • Shin D.S.
        • Escuin-Ordinas H.
        • Hugo W.
        • Hu-Lieskovan S.
        • et al.
        Mutations associated with acquired resistance to PD-1 blockade in melanoma.
        N Engl J Med. 2016; 375: 819-829
        • Karachaliou N.
        • Gonzalez-Cao M.
        • Crespo G.
        • Drozdowskyj A.
        • Aldeguer E.
        • Gimenez-Capitan A.
        • et al.
        Interferon gamma, an important marker of response to immune checkpoint blockade in non-small cell lung cancer and melanoma patients.
        Ther Adv Med Oncol. 2018; 10 (1758834017749748)
        • Spitzer M.H.
        • Carmi Y.
        • Reticker-Flynn N.E.
        • Kwek S.S.
        • Madhireddy D.
        • Martins M.M.
        • et al.
        Systemic immunity is required for effective cancer immunotherapy.
        Cell. 2017; 168 (487–502.e15)
        • Tanizaki J.
        • Haratani K.
        • Hayashi H.
        • Chiba Y.
        • Nakamura Y.
        • Yonesaka K.
        • et al.
        Peripheral blood biomarkers associated with clinical outcome in non-small cell lung cancer patients treated with nivolumab.
        J Thorac Oncol. 2018; 13: 97-105https://doi.org/10.1016/j.jtho.2017.10.030
        • Postow M.A.
        • Chasalow S.D.
        • Yuan J.
        • Kuk D.
        • Panageas K.S.
        • Cheng M.
        • et al.
        Pharmacodynamic effect of ipilimumab on absolute lymphocyte count (ALC) and association with overall survival in patients with advanced melanoma.
        J Clin Oncol. 2013; 31 (9052–9052)https://doi.org/10.1200/jco.2013.31.15_suppl.9052
        • Hanahan D.
        • Weinberg R.A.
        Hallmarks of cancer: the next generation.
        Cell. 2011; 144: 646-674
        • Kargl J.
        • Busch S.E.
        • Yang G.H.
        • Kim K.H.
        • Hanke M.L.
        • Metz H.E.
        • et al.
        Neutrophils dominate the immune cell composition in non-small cell lung cancer.
        Nat Commun. 2017 Feb 1; 8: 14381https://doi.org/10.1038/ncomms14381
        • Coffelt S.B.
        • Wellenstein M.D.
        • de Visser K.E.
        Neutrophils in cancer: neutral no more.
        Nat Rev Canc. 2016; 16: 431-446
        • Akbay E.A.
        • Koyama S.
        • Liu Y.
        • Dries R.
        • Bufe L.E.
        • Silkes M.
        • et al.
        Interleukin-17A promotes lung tumor progression through neutrophil attraction to tumor sites and mediating resistance to PD-1 blockade.
        J Thorac Oncol. 2017 Aug; 12 (Epub 2017 May 6): 1268-1279https://doi.org/10.1016/j.jtho.2017.04.017
        • Gu X.-B.
        • Tian T.
        • Tian X.-J.
        • Zhang X.-J.
        Prognostic significance of neutrophil-to-lymphocyte ratio in non-small cell lung cancer: a meta-analysis.
        Sci Rep. 2015; 5: 12493
        • Liu Z.-L.
        • Zeng T.-T.
        • Zhou X.-J.
        • Ren Y.-N.
        • Zhang L.
        • Zhang X.-X.
        • et al.
        Neutrophil-lymphocyte ratio as a prognostic marker for chemotherapy in advanced lung cancer.
        Int J Biol Markers. 2016; 31: e395-e401
        • Sim S.H.
        • Beom S.-H.
        • Ahn Y.-O.
        • Keam B.
        • Kim T.M.
        • Lee S.-H.
        • et al.
        Pretreatment neutrophil-lymphocyte ratio is not a significant prognostic factor in epidermal growth factor receptor-mutant non-small cell lung cancer patients treated with tyrosine kinase inhibitors.
        Thorac Cancer. 2016; 7: 161-166
        • Bagley S.J.
        • Kothari S.
        • Aggarwal C.
        • Bauml J.M.
        • Alley E.W.
        • Evans T.L.
        • et al.
        Pretreatment neutrophil-to-lymphocyte ratio as a marker of outcomes in nivolumab-treated patients with advanced non-small-cell lung cancer.
        Lung Canc. 2017; 106: 1-7
        • Diem S.
        • Schmid S.
        • Krapf M.
        • Flatz L.
        • Born D.
        • Jochum W.
        • et al.
        Neutrophil-to-Lymphocyte ratio (NLR) and Platelet-to-Lymphocyte ratio (PLR) as prognostic markers in patients with non-small cell lung cancer (NSCLC) treated with nivolumab.
        Lung Canc. 2017; 111: 176-181
        • Suh K.J.
        • Kim S.H.
        • Kim Y.J.
        • Kim M.
        • Keam B.
        • Kim T.M.
        • et al.
        Post-treatment neutrophil-to-lymphocyte ratio at week 6 is prognostic in patients with advanced non-small cell lung cancers treated with anti-PD-1 antibody.
        Cancer Immunol Immunother CII. 2018; 67: 459-470
        • Amato R.J.
        • Flaherty A.
        • Zhang Y.
        • Ouyang F.
        • Mohlere V.
        Clinical prognostic factors associated with outcome in patients with renal cell cancer with prior tyrosine kinase inhibitors or immunotherapy treated with everolimus.
        Urol Oncol. 2014; 32: 345-354
        • Suzuki R.
        • Takagi T.
        • Hikichi T.
        • Konno N.
        • Sugimoto M.
        • Watanabe K.O.
        • et al.
        Derived neutrophil/lymphocyte ratio predicts gemcitabine therapy outcome in unresectable pancreatic cancer.
        Oncol Lett. 2016; 11: 3441-3445
        • van Kessel K.E.M.
        • de Haan L.M.
        • Fransen van de Putte E.E.
        • van Rhijn B.W.G.
        • de Wit R.
        • van der Heijden M.S.
        • et al.
        Elevated derived neutrophil-to-lymphocyte ratio corresponds with poor outcome in patients undergoing pre-operative chemotherapy in muscle-invasive bladder cancer.
        Bladder Cancer. 2016; 2: 351-360
        • Mezquita L.
        • Auclin E.
        • Ferrara R.
        • Charrier M.
        • Remon J.
        • Planchard D.
        • et al.
        Association of the lung immune prognostic index with immune checkpoint inhibitor outcomes in patients with advanced non-small cell lung cancer.
        JAMA Oncol. 2018; 4: 351-357
        • Martens A.
        • Wistuba-Hamprecht K.
        • Geukes Foppen M.
        • Yuan J.
        • Postow M.A.
        • Wong P.
        • et al.
        Baseline peripheral blood biomarkers associated with clinical outcome of advanced melanoma patients treated with ipilimumab.
        Clin Canc Res. 2016; 22: 2908-2918
        • Hu P.
        • Shen H.
        • Wang G.
        • Zhang P.
        • Liu Q.
        • Du J.
        Prognostic significance of systemic inflammation-based lymphocyte- monocyte ratio in patients with lung cancer: based on a large cohort study.
        PloS One. 2014; 9 (e108062)
        • Nagaraj S.
        • Gabrilovich D.I.
        Myeloid-derived suppressor cells in human cancer.
        Cancer J Sudbury Mass. 2010; 16: 348-353
        • Bronte V.
        • Brandau S.
        • Chen S.-H.
        • Colombo M.P.
        • Frey A.B.
        • Greten T.F.
        • et al.
        Recommendations for myeloid-derived suppressor cell nomenclature and characterization standards.
        Nat Commun. 2016; 7: 12150
        • Negorev D.
        • Beier U.H.
        • Zhang T.
        • Quatromoni J.G.
        • Bhojnagarwala P.
        • Albelda S.M.
        • et al.
        Human neutrophils can mimic myeloid-derived suppressor cells (PMN-MDSC) and suppress microbead or lectin-induced T cell proliferation through artefactual mechanisms.
        Sci Rep. 2018; 8: 3135
        • Huang A.
        • Zhang B.
        • Wang B.
        • Zhang F.
        • Fan K.-X.
        • Guo Y.-J.
        Increased CD14(+)HLA-DR (-/low) myeloid-derived suppressor cells correlate with extrathoracic metastasis and poor response to chemotherapy in non-small cell lung cancer patients.
        Cancer Immunol Immunother CII. 2013; 62: 1439-1451
        • Feng P.-H.
        • Lee K.-Y.
        • Chang Y.-L.
        • Chan Y.-F.
        • Kuo L.-W.
        • Lin T.-Y.
        • et al.
        CD14(+)S100A9(+) monocytic myeloid-derived suppressor cells and their clinical relevance in non-small cell lung cancer.
        Am J Respir Crit Care Med. 2012; 186: 1025-1036https://doi.org/10.1164/rccm.201204-0636OC
        • Zhang G.
        • Huang H.
        • Zhu Y.
        • Yu G.
        • Gao X.
        • Xu Y.
        • et al.
        A novel subset of B7-H3+CD14+HLA-DR-/lowmyeloid-derived suppressor cells are associated with progression of human NSCLC.
        OncoImmunology. 2015; 4 (e977164)
        • Vetsika E.-K.
        • Koinis F.
        • Gioulbasani M.
        • Aggouraki D.
        • Koutoulaki A.
        • Skalidaki E.
        • et al.
        A circulating subpopulation of monocytic myeloid-derived suppressor cells as an independent prognostic/predictive factor in untreated non-small lung cancer patients.
        J Immunol Res. 2014; 2014: 659294
        • Koinis F.
        • Vetsika E.K.
        • Aggouraki D.
        • Skalidaki E.
        • Koutoulaki A.
        • Gkioulmpasani M.
        • et al.
        Effect of first-line treatment on myeloid-derived suppressor cells' subpopulations in the peripheral blood of patients with non-small cell lung cancer.
        J Thorac Oncol. 2016; 11: 1263-1272
        • Liu C.-Y.
        • Wang Y.-M.
        • Wang C.-L.
        • Feng P.-H.
        • Ko H.-W.
        • Liu Y.-H.
        • et al.
        Population alterations of L-arginase- and inducible nitric oxide synthase-expressed CD11b+/CD14−/CD15+/CD33+ myeloid-derived suppressor cells and CD8+ T lymphocytes in patients with advanced-stage non-small cell lung cancer.
        J Canc Res Clin Oncol. 2010; 136: 35-45
        • de Goeje P.L.
        • Bezemer K.
        • Heuvers M.E.
        • Dingemans A.-M.C.
        • Groen H.J.
        • Smit E.F.
        • et al.
        Immunoglobulin-like transcript 3 is expressed by myeloid-derived suppressor cells and correlates with survival in patients with non-small cell lung cancer.
        OncoImmunology. 2015; 4 (e1014242)
        • Meyer C.
        • Cagnon L.
        • Costa-Nunes C.M.
        • Baumgaertner P.
        • Montandon N.
        • Leyvraz L.
        • et al.
        Frequencies of circulating MDSC correlate with clinical outcome of melanoma patients treated with ipilimumab.
        Cancer Immunol Immunother CII. 2014; 63: 247-257
        • Tarhini A.A.
        • Butterfield L.H.
        • Shuai Y.
        • Gooding W.E.
        • Kalinski P.
        • Kirkwood J.M.
        Differing patterns of circulating regulatory T cells and myeloid-derived suppressor cells in metastatic melanoma patients receiving anti-CTLA4 antibody and interferon-α or TLR-9 agonist and GM-CSF with peptide vaccination.
        J Immunother. 2012; 35: 702-710
        • Gebhardt C.
        • Sevko A.
        • Jiang H.
        • Lichtenberger R.
        • Reith M.
        • Tarnanidis K.
        • et al.
        Myeloid cells and related chronic inflammatory factors as novel predictive markers in melanoma treatment with ipilimumab.
        Clin Canc Res. 2015; 21: 5453-5459
        • Kitano S.
        • Postow M.A.
        • Ziegler C.G.K.
        • Kuk D.
        • Panageas K.S.
        • Cortez C.
        • et al.
        Computational algorithm-driven evaluation of monocytic myeloid-derived suppressor cell frequency for prediction of clinical outcomes.
        Cancer Immunol Res. 2014; 2: 812-821
        • Krieg C.
        • Nowicka M.
        • Guglietta S.
        • Schindler S.
        • Hartmann F.J.
        • Weber L.M.
        • et al.
        High-dimensional single-cell analysis predicts response to anti-PD-1 immunotherapy.
        Nat Med. 2018; 24: 144-153https://doi.org/10.1038/nm.4466
        • Romano E.
        • Kusio-Kobialka M.
        • Foukas P.G.
        • Baumgaertner P.
        • Meyer C.
        • Ballabeni P.
        • et al.
        Ipilimumab-dependent cell-mediated cytotoxicity of regulatory T cells ex vivo by nonclassical monocytes in melanoma patients.
        Proc Natl Acad Sci U S A. 2015; 112: 6140-6145
        • Coffelt S.B.
        • Wellenstein M.D.
        • de Visser K.E.
        Neutrophils in cancer: neutral no more.
        Nat Rev Canc. 2016; 16: 431-446
        • Kim J-w
        • Dang C.V.
        Cancer's molecular sweet tooth and the Warburg effect.
        Cancer Res. 2006; 66: 8927
        • Zhang J.
        • Yao Y.-H.
        • Li B.-G.
        • Yang Q.
        • Zhang P.-Y.
        • Wang H.-T.
        Prognostic value of pretreatment serum lactate dehydrogenase level in patients with solid tumors: a systematic review and meta-analysis.
        Sci Rep. 2015; 5: 9800
        • Weide B.
        • Martens A.
        • Hassel J.C.
        • Berking C.
        • Postow M.A.
        • Bisschop K.
        • et al.
        Baseline biomarkers for outcome of melanoma patients treated with pembrolizumab.
        Clin Canc Res. 2016 Nov 15; 22 (Epub 2016 May 16): 5487-5496https://doi.org/10.1158/1078-0432.CCR-16-0127
        • Zhao B.
        • Zhao H.
        • Zhao J.
        Impact of clinicopathological characteristics on survival in patients treated with immune checkpoint inhibitors for metastatic melanoma.
        Int J Cancer. 2018 Aug; 19 ([Epub ahead of print])https://doi.org/10.1002/ijc.31813
        • Capone M.
        • Giannarelli D.
        • Mallardo D.
        • Madonna G.
        • Festino L.
        • Grimaldi A.M.
        • et al.
        Baseline neutrophil-to-lymphocyte ratio (NLR) and derived NLR could predict overall survival in patients with advanced melanoma treated with nivolumab.
        J Immunother Cancer. 2018 Jul 16; 6: 74https://doi.org/10.1186/s40425-018-0383-1
        • Deng T.
        • Zhang J.
        • Meng Y.
        • Zhou Y.
        • Li W.
        Higher pretreatment lactate dehydrogenase concentration predicts worse overall survival in patients with lung cancer.
        Medicine (Baltimore). 2018 Sep; 97: e12524https://doi.org/10.1097/MD.0000000000012524
        • De Castro A.M.
        • Navarro A.
        • Perez S.C.
        • Martinez A.
        • Pardo N.
        • Hernando A.
        • et al.
        P3.02c-063 lactate dehydrogenase (LDH) as a surrogate biomarker to checkpoint-inhibitors for patient with advanced non–small-cell lung cancer (NSCLC).
        J Thorac Oncol. 2017; 12: S1313-S1314
        • Del Toro J.M.
        • Olmedo E.
        • Gomez A.
        • Madariaga A.
        • Templado J.P.
        • Gorospe L.
        • et al.
        P3.02c-079 immunotherapy in non-small cell lung cancer (NSCLC): biomarkers associated with early death.
        J Thorac Oncol. 2017; 12: S1325-S1326
        • Garrido F.
        • Ruiz-Cabello F.
        • Aptsiauri N.
        Rejection versus escape: the tumor MHC dilemma.
        Cancer Immunol Immunother. 2017; 66: 259-271
        • Chowell D.
        • Morris L.G.T.
        • Grigg C.M.
        • Weber J.K.
        • Samstein R.M.
        • Makarov V.
        • et al.
        Patient HLA class I genotype influences cancer response to checkpoint blockade immunotherapy.
        Science. 2018; 359: 582-587
        • Nomizo T.
        • Ozasa H.
        • Tsuji T.
        • Funazo T.
        • Yasuda Y.
        • Yoshida H.
        • et al.
        Clinical impact of single nucleotide polymorphism in PD-L1 on response to nivolumab for advanced non-small-cell lung cancer patients.
        Sci Rep. 2017; 7: 45124
      2. McGranahan allele-specific HLA loss and immune escape in lung cancer evolution.
        Cell. 2017 Nov 30; 171: 1259-1271
        • Inoue H.
        • Park J.-H.
        • Kiyotani K.
        • Zewde M.
        • Miyashita A.
        • Jinnin M.
        • et al.
        Intratumoral expression levels of PD-L1, GZMA, and HLA-A along with oligoclonal T cell expansion associate with response to nivolumab in metastatic melanoma.
        OncoImmunology. 2016; 5 (e1204507)
        • Chen P.-L.
        • Roh W.
        • Reuben A.
        • Cooper Z.A.
        • Spencer C.N.
        • Prieto P.A.
        • et al.
        Analysis of immune signatures in longitudinal tumor samples yields insight into biomarkers of response and mechanisms of resistance to immune checkpoint blockade.
        Cancer Discov. 2016; 6: 827-837
        • Hugo W.
        • Zaretsky J.M.
        • Sun L.
        • Song C.
        • Moreno B.H.
        • Hu-Lieskovan S.
        • et al.
        Genomic and transcriptomic features of response to anti-PD-1 therapy in metastatic melanoma.
        Cell. 2016; 165: 35-44
        • Johnson D.B.
        • Estrada M.V.
        • Salgado R.
        • Sanchez V.
        • Doxie D.B.
        • Opalenik S.R.
        • et al.
        Melanoma-specific MHC-II expression represents a tumour-autonomous phenotype and predicts response to anti-PD-1/PD-L1 therapy.
        Nat Commun. 2016; 7: 10582
        • Iida N.
        • Dzutsev A.
        • Stewart C.A.
        • Smith L.
        • Bouladoux N.
        • Weingarten R.A.
        • et al.
        Commensal bacteria control cancer response to therapy by modulating the tumor microenvironment.
        Science. 2013; 342: 967-970
        • Viaud S.
        • Saccheri F.
        • Mignot G.
        • Yamazaki T.
        • Daillère R.
        • Hannani D.
        • et al.
        The intestinal microbiota modulates the anticancer immune effects of cyclophosphamide.
        Science. 2013; 342: 971-976
        • Daillère R.
        • Vétizou M.
        • Waldschmitt N.
        • Yamazaki T.
        • Isnard C.
        • Poirier-Colame V.
        • et al.
        Enterococcus hirae and Barnesiella intestinihominis facilitate cyclophosphamide-induced therapeutic immunomodulatory effects.
        Immunity. 2016; 45: 931-943
        • Vétizou M.
        • Pitt J.M.
        • Daillère R.
        • Lepage P.
        • Waldschmitt N.
        • Flament C.
        • et al.
        Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota.
        Science. 2015; 350: 1079-1084
        • Chaput N.
        • Lepage P.
        • Coutzac C.
        • Soularue E.
        • Le Roux K.
        • Monot C.
        • et al.
        Baseline gut microbiota predicts clinical response and colitis in metastatic melanoma patients treated with ipilimumab.
        Ann Oncol. 2017; 28: 1368-1379
        • Matson V.
        • Fessler J.
        • Bao R.
        • Chongsuwat T.
        • Zha Y.
        • Alegre M.-L.
        • et al.
        The commensal microbiome is associated with anti-PD-1 efficacy in metastatic melanoma patients.
        Science. 2018; 359: 104-108
        • Sivan A.
        • Corrales L.
        • Hubert N.
        • Williams J.B.
        • Aquino-Michaels K.
        • Earley Z.M.
        • et al.
        Commensal Bifidobacterium promotes antitumor immunity and facilitates anti-PD-L1 efficacy.
        Science. 2015; 350: 1084-1089
        • Gopalakrishnan V.
        • Spencer C.N.
        • Nezi L.
        • Reuben A.
        • Andrews M.C.
        • Karpinets T.V.
        • et al.
        Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients.
        Science. 2018; 359: 97-103
        • Routy B.
        • Le Chatelier E.
        • Derosa L.
        • Duong C.P.M.
        • Alou M.T.
        • Daillère R.
        • et al.
        Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors.
        Science. 2018; 359: 91-97
        • Ahmadzadeh M.
        • Johnson L.A.
        • Heemskerk B.
        • Wunderlich J.R.
        • Dudley M.E.
        • White D.E.
        • et al.
        Tumor antigen-specific CD8 T cells infiltrating the tumor express high levels of PD-1 and are functionally impaired.
        Blood. 2009 Aug 20; 114: 1537-1544
        • Gros A.
        • Parkhurst M.R.
        • Tran E.
        • Pasetto A.
        • Robbins P.F.
        • Ilyas S.
        • et al.
        Prospective identification of neoantigen-specific lymphocytes in the peripheral blood of melanoma patients.
        Nat Med. 2016 Apr; 22: 433-438
        • Arrieta O.
        • Montes-Servín E.
        • Hernandez-Martinez J.M.
        • Cardona A.F.
        • Casas-Ruiz E.
        • Crispín J.C.
        • et al.
        Expression of PD-1/PD-L1 and PD-L2 in peripheral T-cells from non-small cell lung cancer patients.
        Oncotarget. 2017 Oct 24; 8: 101994-102005
        • Kamphorst A.O.
        • Pillai R.N.
        • Yang S.
        • Nasti T.H.
        • Akondy R.S.
        • Wieland A.
        • et al.
        Proliferation of PD-1+ CD8 T cells in peripheral blood after PD-1-targeted therapy in lung cancer patients.
        Proc Natl Acad Sci U S A. 2017 May 9; 114: 4993-4998
        • Dunphy F.
        • Yi J.
        • Onaitis M.
        • Osborne R.
        • Harpole D.
        • Crawford J.
        • et al.
        MINI26.05 - immunophenotyping of circulating T cells and TILs with chemotherapy and phased ipilimumab in non-small cell lung cancer (ID 2787).
        in: International association for the study of lung cancer (WCLC congress). 2016
        • Olugbile S.
        • Kiyotani K.
        • Inoue H.
        • Park J.H.
        • Hoffman P.
        • Szeto L.
        • et al.
        In-depth molecular characterization of T cell clonal expansion induced by anti-PD1 therapy in NSCLC.
        J Thorac Oncol. 2017; 12: S1310-S1311
        • Anagnostou V.
        • Smith K.N.
        • Forde P.M.
        • Niknafs N.
        • Bhattacharya R.
        • White J.
        • et al.
        Evolution of neoantigen landscape during immune checkpoint blockade in non-small cell lung cancer.
        Cancer Discov. 2017 Mar; 7: 264-276
      3. Gandara DR, Kowanetz M, Mok TSK, Rittmeyer A, Fehrenbacher L, Fabrizio D et al. 1295 Blood-based biomarkers for cancer immunotherapy: Tumor mutational burden in blood (bTMB) is associated with improved atezolizumab (atezo) efficacy in 2L+ NSCLC (POPLAR and OAK) Ann Oncol, Vol28, Issue suppl_5, 1 September 2017, mdx380, doi:https://doi.org/10.1093/annonc/mdx380.

        • Lee J.H.
        • Long G.V.
        • Boyd S.1
        • Lo S.4
        • Menzies A.M.
        • Tembe V.
        • et al.
        Circulating tumour DNA predicts response to anti-PD1 antibodies in metastatic melanoma.
        Ann Oncol. 2017 May 1; 28: 1130-1136
        • Cabel L.
        • Riva F.
        • Servois V.
        • Livartowski A.
        • Daniel C.
        • Rampanou A.
        • et al.
        Circulating tumor DNA changes for early monitoring of anti-PD1 immunotherapy: a proof-of-concept study.
        Ann Oncol. 2017 Aug 1; 28: 1996-2001
        • Fabrizio D.
        • Malboeuf C.
        • Lieber D.
        • Zhong S.
        • He J.
        • White E.
        • et al.
        102P Analytic validation of a next generation sequencing assay to identify tumor mutational burden from blood (bTMB) to support investigation of an anti-PD-L1 agent, atezolizumab, in a first line non-small cell lung cancer trial (BFAST).
        Ann Oncol. 1 September 2017; 28 (mdx363.018)
        • Huang C.
        • Liu S.
        • Tong X.
        • Fan H.
        Extracellular vesicles and ctDNA in lung cancer: biomarker sources and therapeutic applications.
        Cancer Chemother Pharmacol. 2018 Aug; 82 (Epub 2018 Jun 8): 171-183https://doi.org/10.1007/s00280-018-3586-8
        • Lin M.
        • Liang S.Z.
        • Shi J.
        • Niu L.Z.
        • Chen J.B.
        • Zhang M.J.
        • et al.
        Circulating tumor cell as a biomarker for evaluating allogenic NK cell immunotherapy on stage IV non-small cell lung cancer.
        Immunol Lett. 2017 Nov; 191 (Epub 2017 Sep. 12): 10-15https://doi.org/10.1016/j.imlet.2017.09.004
        • Chen G.
        • Huang A.C.
        • Zhang W.
        • Zhang G.
        • Wu M.
        • Xu W.
        • et al.
        Exosomal PD-L1 contributes to immunosuppression and is associated with anti-PD-1 response.
        Nature. 2018; 560: 382-386