Advertisement

MAPK pathway in melanoma part II—secondary and adaptive resistance mechanisms to BRAF inhibition

Published:February 04, 2017DOI:https://doi.org/10.1016/j.ejca.2016.12.012

      Highlights

      • Resistance to BRAF inhibition (BRAFi) therapy leads to progressive disease.
      • Secondary BRAFi resistance occurs with MAPK reactivation after an initial response.
      • Adaptive BRAFi resistance is associated with initial response and early resistance.
      • BRAFi also alters immune response with possible implications in sequencing therapy.

      Abstract

      BRAF mutation can be identified in about 45% of the patients with metastatic melanoma. In these patients, BRAF and MEK inhibitors are able to induce rapid responses and to prolong survival. However, a significant percentage of patients will develop resistance to targeted therapy and will have progressive disease.
      MAPK pathway is the most important pathway involved in BRAF/MEK inhibition resistance, particularly MAPK pathway reactivation.
      Resistance mechanisms can be classified as 1) primary or intrinsic characterised by no response to therapy, 2) secondary or acquired with MAPK pathway reactivation after a time of tumour regression and 3) as adaptive with initial response and early resistance.
      BRAF inhibition also alters the immune response. Several publications have described immune effects of BRAF inhibition in melanoma tumours, showing that combining targeted and immunotherapy can improve response, despite a possible cross-resistance.
      Here, we continue the review on resistance mechanisms to BRAF/MEK inhibition and focus on the secondary and adaptive mechanisms.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to European Journal of Cancer
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Montagut C.
        • Sharma S.V.
        • Shioda T.
        • McDermott U.
        • Ulman M.
        • Ulkus L.E.
        • et al.
        Elevated CRAF as a potential mechanism of acquired resistance to BRAF inhibition in melanoma.
        Cancer Res. 2008; 68: 4853-4861
        • Smalley K.S.
        • Lioni M.
        • Dalla Palma M.
        • Xiao M.
        • Desai B.
        • Egyhazi S.
        • et al.
        Increased cyclin D1 expression can mediate BRAF inhibitor resistance in BRAF V600E-mutated melanomas.
        Mol Cancer Ther. 2008; 7: 2876-2883
        • Shi H.
        • Hong A.
        • Kong X.
        • Koya R.C.
        • Song C.
        • Moriceau G.
        • et al.
        A novel AKT1 mutant amplifies an adaptive melanoma response to BRAF inhibition.
        Cancer Discov. 2014; 4: 69-79
        • Flaherty K.T.
        • Hodi F.S.
        • Fisher D.E.
        From genes to drugs: targeted strategies for melanoma.
        Nat Rev Cancer. 2012; 12: 349-361
        • Heidorn S.J.
        • Milagre C.
        • Whittaker S.
        • Nourry A.
        • Niculescu-Duvas I.
        • Dhomen N.
        • et al.
        Kinase-dead BRAF and oncogenic RAS cooperate to drive tumor progression through CRAF.
        Cell. 2010; 140: 209-221
        • Nazarian R.
        • Shi H.
        • Wang Q.
        • Kong X.
        • Koya R.C.
        • Lee H.
        • et al.
        Melanomas acquire resistance to B-RAF(V600E) inhibition by RTK or N-RAS upregulation.
        Nature. 2010; 468: 973-977
        • Gowrishankar K.
        • Snoyman S.
        • Pupo G.M.
        • Becker T.M.
        • Kefford R.F.
        • Rizos H.
        Acquired resistance to BRAF inhibition can confer cross-resistance to combined BRAF/MEK inhibition.
        J Invest Dermatol. 2012; 132: 1850-1859
        • Su F.
        • Bradley W.D.
        • Wang Q.
        • Yang H.
        • Xu L.
        • Higgins B.
        • et al.
        Resistance to selective BRAF inhibition can be mediated by modest upstream pathway activation.
        Cancer Res. 2012; 72: 969-978
        • Johnson D.B.
        • Menzies A.M.
        • Zimmer L.
        • Eroglu Z.
        • Ye F.
        • Zhao S.
        • et al.
        Acquired BRAF inhibitor resistance: a multicenter meta-analysis of the spectrum and frequencies, clinical behaviour, and phenotypic associations of resistance mechanisms.
        Eur J Cancer. 2015; 51: 2792-2799
        • Shi H.
        • Hugo W.
        • Kong X.
        • Hong A.
        • Koya R.C.
        • Moriceau G.
        • et al.
        Acquired resistance and clonal evolution in melanoma during BRAF inhibitor therapy.
        Cancer Discov. 2014; 4: 80-93
        • Rizos H.
        • Menzies A.M.
        • Pupo G.M.
        • Carlino M.S.
        • Fung C.
        • Hyman J.
        • et al.
        BRAF inhibitor resistance mechanisms in metastatic melanoma: spectrum and clinical impact.
        Clin Cancer Res. 2014; 20: 1965-1977
        • Trunzer K.
        • Pavlick A.C.
        • Schuchter L.
        • Gonzalez R.
        • McArthur G.A.
        • Hutson T.E.
        • et al.
        Pharmacodynamic effects and mechanisms of resistance to vemurafenib in patients with metastatic melanoma.
        J Clin Oncol. 2013; 31: 1767-1774
        • Leicht D.T.
        • Balan V.
        • Kaplun A.
        • Singh-Gupta V.
        • Kaplun L.
        • Dobson M.
        • et al.
        Raf kinases: function, regulation and role in human cancer.
        Biochim Biophys Acta. 2007; 1773: 1196-1212
        • Matallanas D.
        • Birtwistle M.
        • Romano D.
        • Zebisch A.
        • Rauch J.
        • von Kriegsheim A.
        • et al.
        Raf family kinases: old dogs have learned new tricks.
        Genes Cancer. 2011; 2: 232-260
        • Villanueva J.
        • Vultur A.
        • Lee J.T.
        • Somasundaram R.
        • Fukunaga-Kalabis M.
        • Cipolla A.K.
        • et al.
        Acquired resistance to BRAF inhibitors mediated by a RAF kinase switch in melanoma can be overcome by cotargeting MEK and IGF-1R/PI3K.
        Cancer Cell. 2010; 18: 683-695
        • Johannessen C.M.
        • Boehm J.S.
        • Kim S.Y.
        • Thomas S.R.
        • Wardwell L.
        • Johnson L.A.
        • et al.
        COT drives resistance to RAF inhibition through MAP kinase pathway reactivation.
        Nature. 2010; 468: 968-972
        • Poulikakos P.I.
        • Persaud Y.
        • Janakiraman M.
        • Kong X.
        • Ng C.
        • Moriceau G.
        • et al.
        RAF inhibitor resistance is mediated by dimerization of aberrantly spliced BRAF(V600E).
        Nature. 2011; 480: 387-390
        • Shi H.
        • Moriceau G.
        • Kong X.
        • Lee M.K.
        • Lee H.
        • Koya R.C.
        • et al.
        Melanoma whole-exome sequencing identifies (V600E)B-RAF amplification-mediated acquired B-RAF inhibitor resistance.
        Nat Commun. 2012; 3: 724
        • Sosman J.A.
        • Kim K.B.
        • Schuchter L.
        • Gonzalez R.
        • Pavlick A.C.
        • Weber J.S.
        • et al.
        Survival in BRAF V600-mutant advanced melanoma treated with vemurafenib.
        N Engl J Med. 2012; 366: 707-714
        • Carlino M.S.
        • Fung C.
        • Shahheydari H.
        • Todd J.R.
        • Boyd S.C.
        • Irvine M.
        • et al.
        Preexisting MEK1P124 mutations diminish response to BRAF inhibitors in metastatic melanoma patients.
        Clin Cancer Res. 2015; 21: 98-105
        • Goetz E.M.
        • Ghandi M.
        • Treacy D.J.
        • Wagle N.
        • Garraway L.A.
        ERK mutations confer resistance to mitogen-activated protein kinase pathway inhibitors.
        Cancer Res. 2014; 74: 7079-7089
        • Shi H.
        • Kong X.
        • Ribas A.
        • Lo R.S.
        Combinatorial treatments that overcome PDGFRbeta-driven resistance of melanoma cells to V600EB-RAF inhibition.
        Cancer Res. 2011; 71: 5067-5074
        • Sabbatino F.
        • Wang Y.
        • Wang X.
        • Flaherty K.T.
        • Yu L.
        • Pepin D.
        • et al.
        PDGFRalpha up-regulation mediated by sonic hedgehog pathway activation leads to BRAF inhibitor resistance in melanoma cells with BRAF mutation.
        Oncotarget. 2014; 5: 1926-1941
        • Girotti M.R.
        • Marais R.
        Deja Vu: EGF receptors drive resistance to BRAF inhibitors.
        Cancer Discov. 2013; 3: 487-490
        • Girotti M.R.
        • Pedersen M.
        • Sanchez-Laorden B.
        • Viros A.
        • Turajlic S.
        • Niculescu-Duvaz D.
        • et al.
        Inhibiting EGF receptor or SRC family kinase signaling overcomes BRAF inhibitor resistance in melanoma.
        Cancer Discov. 2013; 3: 158-167
        • Miao B.
        • Ji Z.
        • Tan L.
        • Taylor M.
        • Zhang J.
        • Choi H.G.
        • et al.
        EPHA2 is a mediator of vemurafenib resistance and a novel therapeutic target in melanoma.
        Cancer Discov. 2015; 5: 274-287
        • Müller J.
        • Krijgsman O.
        • Tsoi J.
        • Robert L.
        • Hugo W.
        • Song C.
        • et al.
        Low MITF/AXL ratio predicts early resistance to multiple targeted drugs in melanoma.
        Nat Commun. 2014; 5
        • Sinnberg T.
        • Makino E.
        • Krueger M.A.
        • Velic A.
        • Macek B.
        • Rothbauer U.
        • et al.
        A nexus consisting of Beta-Catenin and Stat3 attenuates BRAF inhibitor efficacy and mediates acquired resistance to vemurafenib.
        EBioMedicine. 2016; 8: 132-149
        • Van Allen E.M.
        • Wagle N.
        • Sucker A.
        • Treacy D.J.
        • Johannessen C.M.
        • Goetz E.M.
        • et al.
        The genetic landscape of clinical resistance to RAF inhibition in metastatic melanoma.
        Cancer Discov. 2014; 4: 94-109
        • Shao Y.
        • Aplin A.E.
        Akt3-mediated resistance to apoptosis in B-RAF-targeted melanoma cells.
        Cancer Res. 2010; 70: 6670-6681
        • Moriceau G.
        • Hugo W.
        • Hong A.
        • Shi H.
        • Kong X.
        • Yu C.C.
        • et al.
        Tunable-combinatorial mechanisms of acquired resistance limit the efficacy of BRAF/MEK cotargeting but result in melanoma drug addiction.
        Cancer Cell. 2015; 27: 240-256
        • Krepler C.
        • Xiao M.
        • Sproesser K.
        • Brafford P.A.
        • Shannan B.
        • Beqiri M.
        • et al.
        Personalized preclinical trials in BRAF inhibitor-resistant patient-derived xenograft models identify second-line combination therapies.
        Clin Cancer Res. 2016; 22: 1592-1602
        • Martz C.A.
        • Ottina K.A.
        • Singleton K.R.
        • Jasper J.S.
        • Wardell S.E.
        • Peraza-Penton A.
        • et al.
        Systematic identification of signaling pathways with potential to confer anticancer drug resistance.
        Sci Signal. 2014; 7: ra121
        • Lito P.
        • Pratilas C.A.
        • Joseph E.W.
        • Tadi M.
        • Halilovic E.
        • Zubrowski M.
        • et al.
        Relief of profound feedback inhibition of mitogenic signaling by RAF inhibitors attenuates their activity in BRAFV600E melanomas.
        Cancer Cell. 2012; 22: 668-682
        • Haq R.
        • Shoag J.
        • Andreu-Perez P.
        • Yokoyama S.
        • Edelman H.
        • Rowe G.C.
        • et al.
        Oncogenic BRAF regulates oxidative metabolism via PGC1alpha and MITF.
        Cancer Cell. 2013; 23: 302-315
        • Smith M.P.
        • Ferguson J.
        • Arozarena I.
        • Hayward R.
        • Marais R.
        • Chapman A.
        • et al.
        Effect of SMURF2 targeting on susceptibility to MEK inhibitors in melanoma.
        J Natl Cancer Inst. 2013; 105: 33-46
        • Gopal Y.N.
        • Rizos H.
        • Chen G.
        • Deng W.
        • Frederick D.T.
        • Cooper Z.A.
        • et al.
        Inhibition of mTORC1/2 overcomes resistance to MAPK pathway inhibitors mediated by PGC1alpha and oxidative phosphorylation in melanoma.
        Cancer Res. 2014; 74: 7037-7047
        • Johannessen C.M.
        • Johnson L.A.
        • Piccioni F.
        • Townes A.
        • Frederick D.T.
        • Donahue M.K.
        • et al.
        A melanocyte lineage program confers resistance to MAP kinase pathway inhibition.
        Nature. 2013; 504: 138-142
        • Frederick D.T.
        BRAF inhibition is associated with enhanced melanoma antigen expression and a more favorable tumor microenvironment in patients with metastatic melanoma.
        Clin Cancer Res. 2013; 19: 1225-1231
        • Corazao-Rozas P.
        • Guerreschi P.
        • Jendoubi M.
        • Andre F.
        • Jonneaux A.
        • Scalbert C.
        • et al.
        Mitochondrial oxidative stress is the Achille's heel of melanoma cells resistant to Braf-mutant inhibitor.
        Oncotarget. 2013; 4: 1986-1998
        • Abel E.V.
        • Aplin A.E.
        FOXD3 is a mutant B-RAF-regulated inhibitor of G(1)-S progression in melanoma cells.
        Cancer Res. 2010; 70: 2891-2900
        • Basile K.J.
        • Abel E.V.
        • Aplin A.E.
        Adaptive upregulation of FOXD3 and resistance to PLX4032/4720-induced cell death in mutant B-RAF melanoma cells.
        Oncogene. 2012; 31: 2471-2479
        • Abel E.V.
        • Basile K.J.
        • Kugel 3rd, C.H.
        • Witkiewicz A.K.
        • Le K.
        • Amaravadi R.K.
        • et al.
        Melanoma adapts to RAF/MEK inhibitors through FOXD3-mediated upregulation of ERBB3.
        J Clin Invest. 2013; 123: 2155-2168
        • Straussman R.
        • Morikawa T.
        • Shee K.
        • Barzily-Rokni M.
        • Qian Z.R.
        • Du J.
        • et al.
        Tumour micro-environment elicits innate resistance to RAF inhibitors through HGF secretion.
        Nature. 2012; 487: 500-504
        • Wilson T.R.
        • Fridlyand J.
        • Yan Y.
        • Penuel E.
        • Burton L.
        • Chan E.
        • et al.
        Widespread potential for growth-factor-driven resistance to anticancer kinase inhibitors.
        Nature. 2012; 487: 505-509
        • Gopal Y.N.
        • Deng W.
        • Woodman S.E.
        • Komurov K.
        • Ram P.
        • Smith P.D.
        • et al.
        Basal and treatment-induced activation of AKT mediates resistance to cell death by AZD6244 (ARRY-142886) in Braf-mutant human cutaneous melanoma cells.
        Cancer Res. 2010; 70: 8736-8747
        • Delmas A.
        • Cherier J.
        • Pohorecka M.
        • Medale-Giamarchi C.
        • Meyer N.
        • Casanova A.
        • et al.
        The c-Jun/RHOB/AKT pathway confers resistance of BRAF-mutant melanoma cells to MAPK inhibitors.
        Oncotarget. 2015; 6: 15250-15264
        • Manning B.D.
        • Cantley L.C.
        AKT/PKB signaling: navigating downstream.
        Cell. 2007; 129: 1261-1274
        • Hanada M.
        • Feng J.
        • Hemmings B.A.
        Structure, regulation and function of PKB/AKT–a major therapeutic target.
        Biochim Biophys Acta. 2004; 1697: 3-16
        • Lassen A.
        • Atefi M.
        • Robert L.
        • Wong D.J.
        • Cerniglia M.
        • Comin-Anduix B.
        • et al.
        Effects of AKT inhibitor therapy in response and resistance to BRAF inhibition in melanoma.
        Mol Cancer. 2014; 13: 83
        • Whipple C.A.
        • Boni A.
        • Fisher J.L.
        • Hampton T.H.
        • Tsongalis G.J.
        • Mellinger D.L.
        • et al.
        The mitogen-activated protein kinase pathway plays a critical role in regulating immunological properties of BRAF mutant cutaneous melanoma cells.
        Melanoma Res. 2016 Jun; 26: 223-235
        • Wang T.
        • Xiao M.
        • Ge Y.
        • Krepler C.
        • Belser E.
        • Lopez-Coral A.
        • et al.
        BRAF inhibition stimulates melanoma-associated macrophages to drive tumor growth.
        Clin Cancer Res. 2015; 21: 1652-1664
        • Ngiow S.F.
        • Meeth K.M.
        • Stannard K.
        • Barkauskas D.S.
        • Bollag G.
        • Bosenberg M.
        • et al.
        Co-inhibition of colony stimulating factor-1 receptor and BRAF oncogene in mouse models of BRAFV600E melanoma.
        Oncoimmunology. 2016; 5: e1089381
        • Mok S.
        • Tsoi J.
        • Koya R.C.
        • Hu-Lieskovan S.
        • West B.L.
        • Bollag G.
        • et al.
        Inhibition of colony stimulating factor-1 receptor improves antitumor efficacy of BRAF inhibition.
        BMC Cancer. 2015; 15: 356
        • Steinberg S.M.
        • Zhang P.
        • Malik B.T.
        • Boni A.
        • Shabaneh T.B.
        • Byrne K.T.
        • et al.
        BRAF inhibition alleviates immune suppression in murine autochthonous melanoma.
        Cancer Immunol Res. 2014; 2: 1044-1050
        • Hugo W.
        • Shi H.
        • Sun L.
        • Piva M.
        • Song C.
        • Kong X.
        • et al.
        Non-genomic and immune evolution of melanoma acquiring MAPKi resistance.
        Cell. 2015; 162: 1271-1285
        • Ott P.A.
        • Bhardwaj N.
        Impact of MAPK pathway activation in BRAF(V600) melanoma on T cell and dendritic cell function.
        Front in Immunol. 2013; 4: 346
        • Ott P.A.
        • Henry T.
        • Baranda S.J.
        • Frleta D.
        • Manches O.
        • Bogunovic D.
        • et al.
        Inhibition of both BRAF and MEK in BRAFV600E mutant melanoma restores compromised dendritic cell (DC) function while having differential direct effects on DC properties.
        Cancer Immunol Immunother. 2013; 62: 811-822
        • Ferrari de Andrade L.
        • Ngiow S.F.
        • Stannard K.
        • Rusakiewicz S.
        • Kalimutho M.
        • Khanna K.K.
        • et al.
        Natural killer cells are essential for the ability of BRAF inhibitors to control BRAFV600E-mutant metastatic melanoma.
        Cancer Res. 2014; 74: 7298-7308
        • Knight D.A.
        • Ngiow S.F.
        • Li M.
        • Parmenter T.
        • Mok S.
        • Cass A.
        • et al.
        Host immunity contributes to the anti-melanoma activity of BRAF inhibitors.
        J Clin Invest. 2013; 123: 1371-1381
      1. Genomic classification of cutaneous melanoma.
        Cell. 2015; 161: 1681-1696
        • Kwong L.N.
        • Davies M.A.
        Navigating the therapeutic complexity of PI3K pathway inhibition in melanoma.
        Clin Cancer Res. 2013; 19https://doi.org/10.1158/078-0432.CCR-13-142
        • Penna I.
        • Molla A.
        • Grazia G.
        • Cleris L.
        • Nicolini G.
        • Perrone F.
        • et al.
        Primary cross-resistance to BRAFV600E-, MEK1/2- and PI3K/mTOR-specific inhibitors in BRAF-mutant melanoma cells counteracted by dual pathway blockade.
        Oncotarget. 2016; 7: 3947-3965
        • Krayem M.
        • Journe F.
        • Wiedig M.
        • Morandini R.
        • Najem A.
        • Sales F.
        • et al.
        p53 Reactivation by PRIMA-1(Met) (APR-246) sensitises (V600E/K)BRAF melanoma to vemurafenib.
        Eur J Cancer. 2016; 55: 98-110
        • Atiq R.
        • Hertz R.
        • Eldad S.
        • Smeir E.
        • Bar-Tana J.
        Suppression of B-Raf(V600E) cancers by MAPK hyper-activation.
        Oncotarget. 2016 Apr 5; 7: 18694-18704
        • Smith M.P.
        • Brunton H.
        • Rowling E.J.
        • Ferguson J.
        • Arozarena I.
        • Miskolczi Z.
        • et al.
        Inhibiting drivers of non-mutational drug tolerance is a salvage strategy for targeted melanoma therapy.
        Cancer Cell. 2016; 29: 270-284
        • Tolcher A.W.
        • Patnaik A.
        • Papadopoulos K.P.
        • Rasco D.W.
        • Becerra C.R.
        • Allred A.J.
        • et al.
        Phase I study of the MEK inhibitor trametinib in combination with the AKT inhibitor afuresertib in patients with solid tumors and multiple myeloma.
        Cancer Chemother Pharmacol. 2015; 75: 183-189
        • Bedard P.L.
        • Tabernero J.
        • Janku F.
        • Wainberg Z.A.
        • Paz-Ares L.
        • Vansteenkiste J.
        • et al.
        A phase Ib dose-escalation study of the oral pan-PI3K inhibitor buparlisib (BKM120) in combination with the oral MEK1/2 inhibitor trametinib (GSK1120212) in patients with selected advanced solid tumors.
        Clin Cancer Res. 2015; 21: 730-738
        • Atefi M.
        • Avramis E.
        • Lassen A.
        • Wong D.J.
        • Robert L.
        • Foulad D.
        • et al.
        Effects of MAPK and PI3K pathways on PD-L1 expression in melanoma.
        Clin Cancer Res. 2014; 20: 3446-3457
        • Gibney G.T.
        • Messina J.L.
        • Fedorenko I.V.
        • Sondak V.K.
        • Smalley K.S.M.
        Paradoxical oncogenesis—the long-term effects of BRAF inhibition in melanoma.
        Nat Rev Clin Oncol. 2013; 10: 390-399