Advertisement

Systems immune monitoring in cancer therapy

      Highlights

      • A network of dynamic cells drives anti-cancer immune responses.
      • Mass cytometry enables cancer immune monitoring in human blood and tissue biopsies.
      • Cytomic profiling reveals known and novel cell types in complex tissues.
      • Systems cancer immunology may soon help guide clinical decision-making.

      Abstract

      Treatments that successfully modulate anti-cancer immunity have significantly improved outcomes for advanced stage malignancies and sparked intense study of the cellular mechanisms governing therapy response and resistance. These responses are governed by an evolving milieu of cancer and immune cell subpopulations that can be a rich source of biomarkers and biological insight, but it is only recently that research tools have developed to comprehensively characterize this level of cellular complexity. Mass cytometry is particularly well suited to tracking cells in complex tissues because >35 measurements can be made on each of hundreds of thousands of cells per sample, allowing all cells detected in a sample to be characterized for cell type, signalling activity, and functional outcome. This review focuses on mass cytometry as an example of systems level characterization of cancer and immune cells in human tissues, including blood, bone marrow, lymph nodes, and primary tumours. This review also discusses the state of the art in single cell tumour immunology, including tissue collection, technical and biological quality controls, computational analysis, and integration of different experimental and clinical data types. Ex vivo analysis of human tumour cells complements both in vivo monitoring, which generally measures far fewer features or lacks single cell resolution, and laboratory models, which incur cell type losses, signalling alterations, and genomic changes during establishment. Mass cytometry is on the leading edge of a new generation of cytomic tools that work with small tissue samples, such as a fine needle aspirates or blood draws, to monitor changes in rare or unexpected cell subsets during cancer therapy. This approach holds great promise for dissecting cellular microenvironments, monitoring how treatments affect tissues, revealing cellular biomarkers and effector mechanisms, and creating new treatments that productively engage the immune system to fight cancer and other diseases.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to European Journal of Cancer
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Chen D.S.
        • Mellman I.
        Oncology meets immunology: the cancer-immunity cycle.
        Immunity. 2013; 39: 1-10
        • Fridman W.H.
        • Pages F.
        • Sautes-Fridman C.
        • Galon J.
        The immune contexture in human tumours: impact on clinical outcome.
        Nat Rev Cancer. 2012; 12: 298-306
        • Giraldo N.A.
        • Becht E.
        • Remark R.
        • Damotte D.
        • Sautes-Fridman C.
        • Fridman W.H.
        The immune contexture of primary and metastatic human tumours.
        Curr Opin Immunol. 2014; 27: 8-15
        • Bendall S.C.
        • Nolan G.P.
        • Roederer M.
        • Chattopadhyay P.K.
        A deep profiler's guide to cytometry.
        Trends Immunol. 2012; 33: 323-332
        • Irish J.M.
        • Doxie D.B.
        High-dimensional single-cell cancer biology.
        Curr Top Microbiol Immunol. 2014; 377: 1-21
        • Patel S.P.
        • Kurzrock R.
        PD-L1 expression as a predictive biomarker in cancer immunotherapy.
        Mol Cancer Ther. 2015; 14: 847-856
        • Sawyers C.L.
        The cancer biomarker problem.
        Nature. 2008; 452: 548-552
        • Gajewski T.F.
        • Schreiber H.
        • Fu Y.X.
        Innate and adaptive immune cells in the tumor microenvironment.
        Nat Immunol. 2013; 14: 1014-1022
        • Scarlett U.K.
        • Rutkowski M.R.
        • Rauwerdink A.M.
        • Fields J.
        • Escovar-Fadul X.
        • Baird J.
        • et al.
        Ovarian cancer progression is controlled by phenotypic changes in dendritic cells.
        J Exp Med. 2012; 209: 495-506
        • Smyth M.J.
        • Crowe N.Y.
        • Godfrey D.I.
        NK cells and NKT cells collaborate in host protection from methylcholanthrene-induced fibrosarcoma.
        Int Immunol. 2001; 13: 459-463
        • Shankaran V.
        • Ikeda H.
        • Bruce A.T.
        • White J.M.
        • Swanson P.E.
        • Old L.J.
        • et al.
        IFNgamma and lymphocytes prevent primary tumour development and shape tumour immunogenicity.
        Nature. 2001; 410: 1107-1111
        • Qin Z.
        • Blankenstein T.
        CD4+ T cell–mediated tumor rejection involves inhibition of angiogenesis that is dependent on IFN gamma receptor expression by nonhematopoietic cells.
        Immunity. 2000; 12: 677-686
        • Nimmerjahn F.
        • Ravetch J.V.
        Divergent immunoglobulin g subclass activity through selective Fc receptor binding.
        Science. 2005; 310: 1510-1512
        • Shang B.
        • Liu Y.
        • Jiang S.J.
        • Liu Y.
        Prognostic value of tumor-infiltrating FoxP3+ regulatory T cells in cancers: a systematic review and meta-analysis.
        Sci Rep. 2015; 5: 15179
        • Meyer C.
        • Sevko A.
        • Ramacher M.
        • Bazhin A.V.
        • Falk C.S.
        • Osen W.
        • et al.
        Chronic inflammation promotes myeloid-derived suppressor cell activation blocking antitumor immunity in transgenic mouse melanoma model.
        Proc Natl Acad Sci USA. 2011; 108: 17111-17116
        • Balkwill F.
        • Montfort A.
        • Capasso M.
        B regulatory cells in cancer.
        Trends Immunol. 2013; 34: 169-173
        • Newell E.W.
        • Sigal N.
        • Bendall S.C.
        • Nolan G.P.
        • Davis M.M.
        Cytometry by time-of-flight shows combinatorial cytokine expression and virus-specific cell niches within a continuum of CD8+ T cell phenotypes.
        Immunity. 2012; 36: 142-152
        • Strauss L.
        • Bergmann C.
        • Gooding W.
        • Johnson J.T.
        • Whiteside T.L.
        The frequency and suppressor function of CD4+CD25highFoxp3+ T cells in the circulation of patients with squamous cell carcinoma of the head and neck.
        Clin Cancer Res. 2007; 13: 6301-6311
        • Wolf A.M.
        • Wolf D.
        • Steurer M.
        • Gastl G.
        • Gunsilius E.
        • Grubeck-Loebenstein B.
        Increase of regulatory T cells in the peripheral blood of cancer patients.
        Clin Cancer Res. 2003; 9: 606-612
        • Ling K.L.
        • Pratap S.E.
        • Bates G.J.
        • Singh B.
        • Mortensen N.J.
        • George B.D.
        • et al.
        Increased frequency of regulatory T cells in peripheral blood and tumour infiltrating lymphocytes in colorectal cancer patients.
        Cancer Immun. 2007; 7: 7
        • Zhou J.
        • Min Z.
        • Zhang D.
        • Wang W.
        • Marincola F.
        • Wang X.
        Enhanced frequency and potential mechanism of B regulatory cells in patients with lung cancer.
        J Transl Med. 2014; 12: 304
        • Yao Y.
        • Liu R.
        • Shin M.S.
        • Trentalange M.
        • Allore H.
        • Nassar A.
        • et al.
        CyTOF supports efficient detection of immune cell subsets from small samples.
        J Immunol Methods. 2014; 415: 1-5
        • Campana D.
        • Coustan-Smith E.
        Minimal residual disease studies by flow cytometry in acute leukemia.
        Acta Haematol. 2004; 112: 8-15
        • E-aD Amir
        • Davis K.L.
        • Tadmor M.D.
        • Simonds E.F.
        • Levine J.H.
        • Bendall S.C.
        • et al.
        viSNE enables visualization of high dimensional single-cell data and reveals phenotypic heterogeneity of leukemia.
        Nat Biotechnol. 2013; : 545-552
        • Irish J.M.
        • Czerwinski D.K.
        • Nolan G.P.
        • Levy R.
        Altered B-cell receptor signaling kinetics distinguish human follicular lymphoma B cells from tumor-infiltrating nonmalignant B cells.
        Blood. 2006; 108: 3135-3142
        • Valitutti S.
        • Muller S.
        • Salio M.
        • Lanzavecchia A.
        Degradation of T cell receptor (TCR)-CD3-zeta complexes after antigenic stimulation.
        J Exp Med. 1997; 185: 1859-1864
        • Pardoll D.M.
        The blockade of immune checkpoints in cancer immunotherapy.
        Nat Rev Cancer. 2012; 12: 252-264
        • Johnson D.B.
        • Estrada M.V.
        • Salgado R.
        • Sanchez V.
        • Doxie D.B.
        • Opalenik S.R.
        • et al.
        Melanoma-specific MHC-II expression represents a tumour-autonomous phenotype and predicts response to anti-PD-1/PD-L1 therapy.
        Nat Commun. 2016; 7: 10582
        • Bendall S.C.
        • Simonds E.F.
        • Qiu P.
        • Amir el A.D.
        • Krutzik P.O.
        • Finck R.
        • et al.
        Single-cell mass cytometry of differential immune and drug responses across a human hematopoietic continuum.
        Science. 2011; 332: 687-696
        • Bodenmiller B.
        • Zunder E.R.
        • Finck R.
        • Chen T.J.
        • Savig E.S.
        • Bruggner R.V.
        • et al.
        Multiplexed mass cytometry profiling of cellular states perturbed by small-molecule regulators.
        Nat Biotechnol. 2012; 30: 858-867
        • Restifo N.P.
        • Dudley M.E.
        • Rosenberg S.A.
        Adoptive immunotherapy for cancer: harnessing the T cell response.
        Nat Rev Immunol. 2012; 12: 269-281
        • Nicholas K.J.
        • Greenplate A.R.
        • Flaherty D.K.
        • Matlock B.K.
        • Juan J.S.
        • Smith R.M.
        • et al.
        Multiparameter analysis of stimulated human peripheral blood mononuclear cells: a comparison of mass and fluorescence cytometry.
        Cytometry A. 2015;
        • Carr E.J.
        • Dooley J.
        • Garcia-Perez J.E.
        • Lagou V.
        • Lee J.C.
        • Wouters C.
        • et al.
        The cellular composition of the human immune system is shaped by age and cohabitation.
        Nat Immunol. 2016;
        • Das R.
        • Verma R.
        • Sznol M.
        • Boddupalli C.S.
        • Gettinger S.N.
        • Kluger H.
        • et al.
        Combination therapy with anti-CTLA-4 and anti-PD-1 leads to distinct immunologic changes in vivo.
        J Immunol. 2015; 194: 950-959
        • Perfetto S.P.
        • Chattopadhyay P.K.
        • Roederer M.
        Seventeen-colour flow cytometry: unravelling the immune system.
        Nat Rev Immunol. 2004; 4: 648-655
        • Maecker H.T.
        • McCoy J.P.
        • Nussenblatt R.
        Standardizing immunophenotyping for the human immunology project.
        Nat Rev Immunol. 2012; 12: 191-200
        • Bendall S.C.
        • Davis K.L.
        • Amir el A.D.
        • Tadmor M.D.
        • Simonds E.F.
        • Chen T.J.
        • et al.
        Single-cell trajectory detection uncovers progression and regulatory coordination in human B cell development.
        Cell. 2014; 157: 714-725
        • Ornatsky O.
        • Bandura D.
        • Baranov V.
        • Nitz M.
        • Winnik M.A.
        • Tanner S.
        Highly multiparametric analysis by mass cytometry.
        J Immunol Methods. 2010; 361: 1-20
        • Angelo M.
        • Bendall S.C.
        • Finck R.
        • Hale M.B.
        • Hitzman C.
        • Borowsky A.D.
        • et al.
        Multiplexed ion beam imaging of human breast tumors.
        Nat Med. 2014; 20: 436-442
        • Gerdes M.J.
        • Sevinsky C.J.
        • Sood A.
        • Adak S.
        • Bello M.O.
        • Bordwell A.
        • et al.
        Highly multiplexed single-cell analysis of formalin-fixed, paraffin-embedded cancer tissue.
        Proc Natl Acad Sci USA. 2013; 110: 11982-11987
        • Simmons A.J.
        • Banerjee A.
        • McKinley E.T.
        • Scurrah C.R.
        • Herring C.A.
        • Gewin L.S.
        • et al.
        Cytometry-based single-cell analysis of intact epithelial signaling reveals MAPK activation divergent from TNF-α-induced apoptosis in vivo.
        Mol Syst Biol. 2015; 11: 835
        • Wu A.R.
        • Neff N.F.
        • Kalisky T.
        • Dalerba P.
        • Treutlein B.
        • Rothenberg M.E.
        • et al.
        Quantitative assessment of single-cell RNA-sequencing methods.
        Nat Methods. 2014; 11: 41-46
        • Stegle O.
        • Teichmann S.A.
        • Marioni J.C.
        Computational and analytical challenges in single-cell transcriptomics.
        Nat Rev Genet. 2015; 16: 133-145
        • Diggins K.E.
        • Ferrell Jr., P.B.
        • Irish J.M.
        Methods for discovery and characterization of cell subsets in high dimensional mass cytometry data.
        Methods. 2015; 82: 55-63
        • Irish J.M.
        Beyond the age of cellular discovery.
        Nat Immunol. 2014; 15: 1095-1097
        • Mjolsness E.
        • DeCoste D.
        Machine learning for science: state of the art and future prospects.
        Science. 2001; 293: 2051-2055
        • Cheng Y.
        • Wong M.T.
        • van der Maaten L.
        • Newell E.W.
        Categorical analysis of human T cell heterogeneity with one-dimensional soli-expression by nonlinear stochastic embedding.
        J Immunol. 2016; 196: 924-932
        • Amir el A.D.
        • Davis K.L.
        • Tadmor M.D.
        • Simonds E.F.
        • Levine J.H.
        • Bendall S.C.
        • et al.
        viSNE enables visualization of high dimensional single-cell data and reveals phenotypic heterogeneity of leukemia.
        Nat Biotechnol. 2013; 31: 545-552
        • Qiu P.
        • Simonds E.F.
        • Bendall S.C.
        • Gibbs Jr., K.D.
        • Bruggner R.V.
        • Linderman M.D.
        • et al.
        Extracting a cellular hierarchy from high-dimensional cytometry data with SPADE.
        Nat Biotechnol. 2011; 29: 886-891
        • Becher B.
        • Schlitzer A.
        • Chen J.
        • Mair F.
        • Sumatoh H.R.
        • Teng K.W.
        • et al.
        High-dimensional analysis of the murine myeloid cell system.
        Nat Immunol. 2014; 15: 1181-1189
        • Bruggner R.V.
        • Bodenmiller B.
        • Dill D.L.
        • Tibshirani R.J.
        • Nolan G.P.
        Automated identification of stratifying signatures in cellular subpopulations.
        Proc Natl Acad Sci USA. 2014; 111: E2770-E2777
        • Hansmann L.
        • Blum L.
        • Ju C.H.
        • Liedtke M.
        • Robinson W.H.
        • Davis M.M.
        Mass cytometry analysis shows that a novel memory phenotype B cell is expanded in multiple myeloma.
        Cancer Immunol Res. 2015; 3: 650-660
        • Gaudilliere B.
        • Fragiadakis G.K.
        • Bruggner R.V.
        • Nicolau M.
        • Finck R.
        • Tingle M.
        • et al.
        Clinical recovery from surgery correlates with single-cell immune signatures.
        Sci Transl Med. 2014; 6: 255ra131
        • Sen N.
        • Mukherjee G.
        • Sen A.
        • Bendall S.C.
        • Sung P.
        • Nolan G.P.
        • et al.
        Single-cell mass cytometry analysis of human tonsil T cell remodeling by varicella zoster virus.
        Cell Rep. 2014; 8: 633-645
        • Strauss-Albee D.M.
        • Fukuyama J.
        • Liang E.C.
        • Yao Y.
        • Jarrell J.A.
        • Drake A.L.
        • et al.
        Human NK cell repertoire diversity reflects immune experience and correlates with viral susceptibility.
        Sci Transl Med. 2015; 7: 297ra115
        • Irish J.M.
        • Hovland R.
        • Krutzik P.O.
        • Perez O.D.
        • Bruserud O.
        • Gjertsen B.T.
        • et al.
        Single cell profiling of potentiated phospho-protein networks in cancer cells.
        Cell. 2004; 118: 217-228
        • Levine J.H.
        • Simonds E.F.
        • Bendall S.C.
        • Davis K.L.
        • Amir el A.D.
        • Tadmor M.D.
        • et al.
        Data-driven phenotypic dissection of AML reveals progenitor-like cells that correlate with prognosis.
        Cell. 2015; 162: 184-197
        • Leelatian N.
        • Diggins K.E.
        • Irish J.M.
        Characterizing phenotypes and signaling networks of single human cells by mass cytometry.
        Methods Mol Biol. 2015; 1346: 99-113
        • Kotecha N.
        • Krutzik P.O.
        • Irish J.M.
        Web-based analysis and publication of flow cytometry experiments.
        Curr Protoc Cytom. 2010; (Chapter 10:Unit10 17)
        • Giesen C.
        • Wang H.A.
        • Schapiro D.
        • Zivanovic N.
        • Jacobs A.
        • Hattendorf B.
        • et al.
        Highly multiplexed imaging of tumor tissues with subcellular resolution by mass cytometry.
        Nat Methods. 2014; 11: 417-422
        • Gibbs Jr., K.D.
        • Jager A.
        • Crespo O.
        • Goltsev Y.
        • Trejo A.
        • Richard C.E.
        • et al.
        Decoupling of tumor-initiating activity from stable immunophenotype in HoxA9-Meis1-driven AML.
        Cell Stem Cell. 2012; 10: 210-217
        • Finck R.
        • Simonds E.F.
        • Jager A.
        • Krishnaswamy S.
        • Sachs K.
        • Fantl W.
        • et al.
        Normalization of mass cytometry data with bead standards.
        Cytometry A. 2013; 83: 483-494
        • Spidlen J.
        • Breuer K.
        • Rosenberg C.
        • Kotecha N.
        • Brinkman R.R.
        FlowRepository: a resource of annotated flow cytometry datasets associated with peer-reviewed publications.
        Cytometry A. 2012; 81: 727-731
      1. Allison R Greenplate, Douglas B Johnson, Mikael Roussel, Michael R Savona, Jeffrey A Sosman, Igor Puzanov, et al. Myelodysplastic syndrome revealed by systems immunology in a melanoma patient undergoing anti–PD-1 therapy. http://dx.doi.org/10.1158/2326-6066.