Advertisement
Original Research| Volume 55, P98-110, March 2016

Download started.

Ok

p53 Reactivation by PRIMA-1Met (APR-246) sensitises V600E/KBRAF melanoma to vemurafenib

Published:January 17, 2016DOI:https://doi.org/10.1016/j.ejca.2015.12.002

      Highlights

      • This study evaluates and proposes an original drug combination not yet explored to break resistance to MAPK inhibitors in melanoma. Indeed, p53 is largely inactivated in melanoma and up-to-now very few studies are dedicated to reactivate this key pathway along with MAPK inhibition. Actually, one has been proposed and made its way to the clinic exploiting MDM2 inhibition (negative regulator of p53) with Nutlin-3.
      • In the present work, we evaluated a direct p53 activator, PRIMA-1Met that is able to act whatever the mechanism of p53 deactivation, including TP53 mutations in combination with a clinically effective oncogenic BRAF inhibitor vemurafenib and showed very significant synergies both on intrinsic (innate) and acquired resistance to mutBRAF inhibitors. We also described an additional mechanism by which p53 can moderated the activation of PI3K/Akt pathway that is, beside the MAPK, the major resistance mechanism to mutBRAF inhibitors in melanoma.

      Abstract

      Intrinsic and acquired resistance of metastatic melanoma to V600E/KBRAF and/or MEK inhibitors, which is often caused by activation of the PI3K/AKT survival pathway, represents a major clinical challenge. Given that p53 is capable of antagonising PI3K/AKT activation we hypothesised that pharmacological restoration of p53 activity may increase the sensitivity of BRAF-mutant melanoma to MAPK-targeted therapy and eventually delay and/or prevent acquisition of drug resistance. To test this possibility we exposed a panel of vemurafenib-sensitive and resistant (innate and acquired) V600E/KBRAF melanomas to a V600E/KBRAF inhibitor (vemurafenib) alone or in combination with a direct p53 activator (PRIMA-1Met/APR-246). Strikingly, PRIMA-1Met synergised with vemurafenib to induce apoptosis and suppress proliferation of V600E/KBRAF melanoma cells in vitro and to inhibit tumour growth in vivo. Importantly, this drug combination decreased the viability of both vemurafenib-sensitive and resistant melanoma cells irrespectively of the TP53 status. Notably, p53 reactivation was invariably accompanied by PI3K/AKT pathway inhibition, the activity of which was found as a dominant resistance mechanism to BRAF inhibition in our lines. From all various combinatorial modalities tested, targeting the MAPK and PI3K signalling pathways through p53 reactivation or not, the PRIMA-1Met/vemurafenib combination was the most cytotoxic. We conclude that PRIMA-1Met through its ability to directly reactivate p53 regardless of the mechanism causing its deactivation, and thereby dampen PI3K signalling, sensitises V600E/KBRAF-positive melanoma to BRAF inhibitors.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to European Journal of Cancer
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Eggermont A.M.M.
        • Spatz A.
        • Robert C.
        Cutaneous melanoma.
        Lancet Lond Engl. 2014; 383: 816-827https://doi.org/10.1016/S0140-6736(13)60802-8
        • Davies H.
        • Bignell G.R.
        • Cox C.
        • Stephens P.
        • Edkins S.
        • Clegg S.
        • et al.
        Mutations of the BRAF gene in human cancer.
        Nature. 2002; 417: 949-954https://doi.org/10.1038/nature00766
        • Flaherty K.T.
        • Puzanov I.
        • Kim K.B.
        • Ribas A.
        • McArthur G.A.
        • Sosman J.A.
        • et al.
        Inhibition of mutated, activated BRAF in metastatic melanoma.
        N Engl J Med. 2010; 363: 809-819https://doi.org/10.1056/NEJMoa1002011
        • Sosman J.A.
        • Kim K.B.
        • Schuchter L.
        • Gonzalez R.
        • Pavlick A.C.
        • Weber J.S.
        • et al.
        Survival in BRAF V600-mutant advanced melanoma treated with vemurafenib.
        N Engl J Med. 2012; 366: 707-714https://doi.org/10.1056/NEJMoa1112302
        • Hugo W.
        • Shi H.
        • Sun L.
        • Piva M.
        • Song C.
        • Kong X.
        • et al.
        Non-genomic and immune evolution of melanoma acquiring MAPKi resistance.
        Cell. 2015; 162: 1271-1285https://doi.org/10.1016/j.cell.2015.07.061
        • Wagle N.
        • Emery C.
        • Berger M.F.
        • Davis M.J.
        • Sawyer A.
        • Pochanard P.
        • et al.
        Dissecting therapeutic resistance to RAF inhibition in melanoma by tumor genomic profiling.
        J Clin Oncol Off J Am Soc Clin Oncol. 2011; 29: 3085-3096https://doi.org/10.1200/JCO.2010.33.2312
        • Poulikakos P.I.
        • Persaud Y.
        • Janakiraman M.
        • Kong X.
        • Ng C.
        • Moriceau G.
        • et al.
        RAF inhibitor resistance is mediated by dimerization of aberrantly spliced BRAF(V600E).
        Nature. 2011; 480: 387-390https://doi.org/10.1038/nature10662
        • Johannessen C.M.
        • Boehm J.S.
        • Kim S.Y.
        • Thomas S.R.
        • Wardwell L.
        • Johnson L.A.
        • et al.
        COT drives resistance to RAF inhibition through MAP kinase pathway reactivation.
        Nature. 2010; 468: 968-972https://doi.org/10.1038/nature09627
        • Su F.
        • Viros A.
        • Milagre C.
        • Trunzer K.
        • Bollag G.
        • Spleiss O.
        • et al.
        RAS mutations in cutaneous squamous-cell carcinomas in patients treated with BRAF inhibitors.
        N Engl J Med. 2012; 366: 207-215https://doi.org/10.1056/NEJMoa1105358
        • Vergani E.
        • Vallacchi V.
        • Frigerio S.
        • Deho P.
        • Mondellini P.
        • Perego P.
        • et al.
        Identification of MET and SRC activation in melanoma cell lines showing primary resistance to PLX4032.
        Neoplasia N Y N. 2011; 13: 1132-1142
        • Straussman R.
        • Morikawa T.
        • Shee K.
        • Barzily-Rokni M.
        • Qian Z.R.
        • Du J.
        • et al.
        Tumour micro-environment elicits innate resistance to RAF inhibitors through HGF secretion.
        Nature. 2012; 487: 500-504https://doi.org/10.1038/nature11183
        • Paraiso K.H.T.
        • Xiang Y.
        • Rebecca V.W.
        • Abel E.V.
        • Chen Y.A.
        • Munko A.C.
        • et al.
        PTEN loss confers BRAF inhibitor resistance to melanoma cells through the suppression of BIM expression.
        Cancer Res. 2011; 71: 2750-2760https://doi.org/10.1158/0008-5472.CAN-10-2954
        • Brown C.J.
        • Lain S.
        • Verma C.S.
        • Fersht A.R.
        • Lane D.P.
        Awakening guardian angels: drugging the p53 pathway.
        Nat Rev Cancer. 2009; 9: 862-873https://doi.org/10.1038/nrc2763
        • Muller P.A.J.
        • Vousden K.H.
        p53 Mutations in cancer.
        Nat Cell Biol. 2013; 15: 2-8https://doi.org/10.1038/ncb2641
        • Siroy A.E.
        • Boland G.M.
        • Milton D.R.
        • Roszik J.
        • Frankian S.
        • Malke J.
        • et al.
        Beyond BRAFV600: clinical mutation panel testing by next-generation sequencing in advanced melanoma.
        J Invest Dermatol. 2014; https://doi.org/10.1038/jid.2014.366
        • Gembarska A.
        • Luciani F.
        • Fedele C.
        • Russell E.A.
        • Dewaele M.
        • Villar S.
        • et al.
        MDM4 is a key therapeutic target in cutaneous melanoma.
        Nat Med. 2012; 18https://doi.org/10.1038/nm.2863
        • Zhang Y.
        • Xiong Y.
        • Yarbrough W.G.
        ARF promotes MDM2 degradation and stabilizes p53: ARF-INK4a locus deletion impairs both the Rb and p53 tumor suppression pathways.
        Cell. 1998; 92: 725-734
        • Bergamaschi D.
        • Samuels Y.
        • O'Neil N.J.
        • Trigiante G.
        • Crook T.
        • Hsieh J.-K.
        • et al.
        iASPP oncoprotein is a key inhibitor of p53 conserved from worm to human.
        Nat Genet. 2003; 33: 162-167https://doi.org/10.1038/ng1070
        • Brown C.J.
        • Cheok C.F.
        • Verma C.S.
        • Lane D.P.
        Reactivation of p53: from peptides to small molecules.
        Trends Pharmacol Sci. 2011; 32: 53-62https://doi.org/10.1016/j.tips.2010.11.004
        • Bykov V.J.N.
        • Issaeva N.
        • Shilov A.
        • Hultcrantz M.
        • Pugacheva E.
        • Chumakov P.
        • et al.
        Restoration of the tumor suppressor function to mutant p53 by a low-molecular-weight compound.
        Nat Med. 2002; 8: 282-288https://doi.org/10.1038/nm0302-282
        • Bao W.
        • Chen M.
        • Zhao X.
        • Kumar R.
        • Spinnler C.
        • Thullberg M.
        • et al.
        PRIMA-1Met/APR-246 induces wild-type p53-dependent suppression of malignant melanoma tumor growth in 3D culture and in vivo.
        Cell Cycle Georget Tex. 2011; 10: 301-307
        • Lambert J.M.R.
        • Gorzov P.
        • Veprintsev D.B.
        • Söderqvist M.
        • Segerbäck D.
        • Bergman J.
        • et al.
        PRIMA-1 reactivates mutant p53 by covalent binding to the core domain.
        Cancer Cell. 2009; 15: 376-388https://doi.org/10.1016/j.ccr.2009.03.003
        • Krayem M.
        • Journe F.
        • Wiedig M.
        • Morandini R.
        • Sales F.
        • Awada A.
        • et al.
        Prominent role of cyclic adenosine monophosphate signalling pathway in the sensitivity of (WT)BRAF/(WT)NRAS melanoma cells to vemurafenib.
        Eur J Cancer Oxf Engl 1990. 2014; 50: 1310-1320https://doi.org/10.1016/j.ejca.2014.01.021
        • Ji Z.
        • Kumar R.
        • Taylor M.
        • Rajadurai A.
        • Marzuka-Alcalá A.
        • Chen Y.E.
        • et al.
        Vemurafenib synergizes with nutlin-3 to deplete survivin and suppresses melanoma viability and tumor growth.
        Clin Cancer Res Off J Am Assoc Cancer Res. 2013; 19: 4383-4391https://doi.org/10.1158/1078-0432.CCR-13-0074
        • Søndergaard J.N.
        • Nazarian R.
        • Wang Q.
        • Guo D.
        • Hsueh T.
        • Mok S.
        • et al.
        Differential sensitivity of melanoma cell lines with BRAF V600E mutation to the specific Raf inhibitor PLX4032.
        J Transl Med. 2010; 8: 39https://doi.org/10.1186/1479-5876-8-39
        • Gopal Y.N.V.
        • Rizos H.
        • Chen G.
        • Deng W.
        • Frederick D.T.
        • Cooper Z.A.
        • et al.
        Inhibition of mTORC1/2 overcomes resistance to MAPK pathway inhibitors mediated by PGC1α and oxidative phosphorylation in melanoma.
        Cancer Res. 2014; 74: 7037-7047https://doi.org/10.1158/0008-5472.CAN-14-1392
        • Astanehe A.
        • Arenillas D.
        • Wasserman W.W.
        • Leung P.C.K.
        • Dunn S.E.
        • Davies B.R.
        • et al.
        Mechanisms underlying p53 regulation of PIK3CA transcription in ovarian surface epithelium and in ovarian cancer.
        J Cell Sci. 2008; 121: 664-674https://doi.org/10.1242/jcs.013029
        • Stambolic V.
        • MacPherson D.
        • Sas D.
        • Lin Y.
        • Snow B.
        • Jang Y.
        • et al.
        Regulation of PTEN transcription by p53.
        Mol Cell. 2001; 8: 317-325
        • Atefi M.
        • von Euw E.
        • Attar N.
        • Ng C.
        • Chu C.
        • Guo D.
        • et al.
        Reversing melanoma cross-resistance to BRAF and MEK inhibitors by co-targeting the AKT/mTOR pathway.
        PLoS One. 2011; 6: e28973https://doi.org/10.1371/journal.pone.0028973
        • Su F.
        • Bradley W.D.
        • Wang Q.
        • Yang H.
        • Xu L.
        • Higgins B.
        • et al.
        Resistance to selective BRAF inhibition can be mediated by modest upstream pathway activation.
        Cancer Res. 2012; 72: 969-978https://doi.org/10.1158/0008-5472.CAN-11-1875
        • de Lange J.
        • Ly L.V.
        • Lodder K.
        • Verlaan-de Vries M.
        • Teunisse A.F.A.S.
        • Jager M.J.
        • et al.
        Synergistic growth inhibition based on small-molecule p53 activation as treatment for intraocular melanoma.
        Oncogene. 2012; 31: 1105-1116https://doi.org/10.1038/onc.2011.309
        • Ji Z.
        • Njauw C.N.
        • Taylor M.
        • Neel V.
        • Flaherty K.T.
        • Tsao H.
        p53 rescue through HDM2 antagonism suppresses melanoma growth and potentiates MEK inhibition.
        J Invest Dermatol. 2012; 132: 356-364https://doi.org/10.1038/jid.2011.313
        • Lu M.
        • Breyssens H.
        • Salter V.
        • Zhong S.
        • Hu Y.
        • Baer C.
        • et al.
        Restoring p53 function in human melanoma cells by inhibiting MDM2 and cyclin B1/CDK1-phosphorylated nuclear iASPP.
        Cancer Cell. 2013; 23: 618-633https://doi.org/10.1016/j.ccr.2013.03.013
        • Lu M.
        • Miller P.
        • Lu X.
        Restoring the tumour suppressive function of p53 as a parallel strategy in melanoma therapy.
        FEBS Lett. 2014; 588: 2616-2621https://doi.org/10.1016/j.febslet.2014.05.008
        • Yu X.
        • Narayanan S.
        • Vazquez A.
        • Carpizo D.R.
        Small molecule compounds targeting the p53 pathway: are we finally making progress?.
        Apoptosis. 2014; 19: 1055-1068https://doi.org/10.1007/s10495-014-0990-3
        • Kruse J.-P.
        • Gu W.
        Modes of p53 regulation.
        Cell. 2009; 137: 609-622https://doi.org/10.1016/j.cell.2009.04.050
        • Liu D.S.H.
        • Read M.
        • Cullinane C.
        • Azar W.J.
        • Fennell C.M.
        • Montgomery K.G.
        • et al.
        APR-246 potently inhibits tumour growth and overcomes chemoresistance in preclinical models of oesophageal adenocarcinoma.
        Gut. 2015; 64: 1506-1516https://doi.org/10.1136/gutjnl-2015-309770
        • Sheu J.J.-C.
        • Guan B.
        • Tsai F.-J.
        • Hsiao E.Y.-T.
        • Chen C.-M.
        • Seruca R.
        • et al.
        Mutant BRAF induces DNA strand breaks, activates DNA damage response pathway, and up-regulates glucose transporter-1 in nontransformed epithelial cells.
        Am J Pathol. 2012; 180: 1179-1188https://doi.org/10.1016/j.ajpath.2011.11.026
        • Sánchez-Hernández I.
        • Baquero P.
        • Calleros L.
        • Chiloeches A.
        Dual inhibition of V600EBRAF and the PI3K/AKT/mTOR pathway cooperates to induce apoptosis in melanoma cells through a MEK-independent mechanism.
        Cancer Lett. 2012; 314: 244-255https://doi.org/10.1016/j.canlet.2011.09.037
        • Shimizu T.
        • Tolcher A.W.
        • Papadopoulos K.P.
        • Beeram M.
        • Rasco D.W.
        • Smith L.S.
        • et al.
        The clinical effect of the dual-targeting strategy involving PI3K/AKT/mTOR and RAS/MEK/ERK pathways in patients with advanced cancer.
        Clin Cancer Res. 2012; 18: 2316-2325https://doi.org/10.1158/1078-0432.CCR-11-2381

      Linked Article