Advertisement
Research Article| Volume 51, ISSUE 4, P464-472, March 2015

Download started.

Ok

Molecular mechanisms of constitutive and inducible NF-kappaB activation in oesophageal adenocarcinoma

Published:January 14, 2015DOI:https://doi.org/10.1016/j.ejca.2014.11.014

      Abstract

      Background

      Nuclear factor-kappaB (NF-κB) regulates the expression of a large number of genes involved in the immune and inflammatory response. NF-κB is constitutively activated in oesophageal tumour tissues and induced in oesophageal cells by bile and acid. The aim of the present study was to define the mechanisms underlying NF-κB activation in oesophageal adenocarcinoma.

      Patients and methods

      Fresh biopsy specimens were obtained from 20 patients with oesophageal adenocarcinoma. The activation of NF-κB in oesophageal tumour specimens and oesophageal SKGT-4 cells was assessed by gel mobility shift and Western blotting. Phosphorylation of protein kinase B (AKT/PKB), Ikappa kinase-alpha/beta (IKK-α/β) and extracellular signal-regulated kinase 1/2 (ERK1/2) was examined by Western blotting. High content analysis was used to quantify NF-κB translocation in oesophageal cells.

      Results

      Oesophageal tumour tissues had higher levels of NF-κB. Increased levels of phosphorylated AKT and IKK-α/β and ERK1/2 were detected in tumour tissues compared with normal oesophageal mucosa. Exposure of SKGT-4 cells to deoxycholic acid (DCA) or acid resulted in NF-κB activation and phosphorylation of AKT, IKK-α/β and ERK1/2. Specific inhibitors for phosphoinositide 3-kinase; PI3K (LY294002 and worhmannin) and ERK1/2 inhibitors (PD98059 and U0126) suppressed DCA- and acid-induced NF-κB activation. The proteasome inhibitor MG-132 and the antioxidants vitamin C and pyrrolidine dithiocarbamate (PDTC) also inhibited NF-κB activation.

      Conclusions

      Our data demonstrate a major role for PI3K/AKT–IKK-α/β–ERK1/2 signalling pathway in NF-κB activation in oesophageal adenocarcinoma. These results suggest that NF-κB may be a prognostic marker for oesophageal adenocarcinoma, and modulating of NF-κB may uncover new therapeutic strategies.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to European Journal of Cancer
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Blot W.
        Esophageal cancer trends and risk factors.
        Semin Oncol. 1994; 21: 403-410
        • McCann J.
        Esophageal cancers: changing character, increasing incidence.
        J Natl Cancer Inst. 1999; 91: 497-498
        • Lagergren J.
        • Bergström R.
        • Lindgren A.
        • et al.
        Symptomatic gastroesophageal reflux as a risk factor for esophageal adenocarcinoma.
        N Engl J Med. 1999; 340: 825-831
        • Wild C.P.
        • Hardie L.J.
        Reflux, Barrett’s oesophagus and adenocarcinoma: burning questions.
        Nat Rev Cancer. 2003; 3: 676-684
        • Debruyne P.R.
        • Bruyneel E.A.
        • Li X.
        • et al.
        The role of bile acids in carcinogenesis.
        Mutat Res. 2001; 480–481: 359-369
        • Fitzgerald R.C.
        • Omary M.B.
        • Triadafilopoulos G.
        Dynamic effects of acid on Barrett’s oesophagus. An ex vivo proliferation and differentiation model.
        J Clin Invest. 1996; 98: 2120-2128
        • Abdel-Latif M.M.
        • Duggan S.
        • Reynolds J.V.
        • et al.
        Inflammation and esophageal carcinogenesis.
        Curr Opin Pharmacol. 2009; 9: 396-404
        • Jankowski J.A.
        • Wright N.A.
        • Meltzer S.J.
        • et al.
        Molecular evolution of the metaplasia–dysplasia–adenocarcinoma sequence in the esophagus.
        Am J Pathol. 1999; 154: 965-973
        • Jolly A.J.
        • Wild C.P.
        • Hardie L.J.
        Acid and bile salts induce DNA damage in human oesophageal cell lines.
        Mutagenesis. 2004; 19: 319-324
        • Farhadi A.
        • Fields J.
        • Banan A.
        • et al.
        Reactive oxygen species: are they involved in the pathogenesis of GERD, Barrett’s esophagus, and the latter’s progression toward esophageal cancer?.
        Am J Gastroenterol. 2002; 97: 22-26
        • Dvorak K.
        • Payne C.M.
        • Chavarria M.
        • et al.
        Bile acids in combination with low pH induce oxidative stress and oxidative DNA damage: relevance to the pathogenesis of Barrett’s oesophagus.
        Gut. 2007; 56: 763-771
        • Fountoulakis A.
        • Martin I.G.
        • White K.L.
        • et al.
        Plasma and esophageal mucosal levels of vitamin C: role in the pathogenesis and neoplastic progression of Barrett’s esophagus.
        Dig Dis Sci. 2004; 49: 914-919
        • Kopp E.B.
        • Ghosh S.
        NF-κB and Rel proteins in innate immunity.
        Adv Immunol. 1995; 58: 1-27
        • Baeuerle P.A.
        • Henkel T.
        Function and activation of NF-κB in the immune system.
        Annu Rev Immunol. 1994; 12: 141-179
        • Abdel-Latif M.M.
        • Kelleher D.
        • Reynolds J.V.
        Potential role of NF-kappaB in esophageal adenocarcinoma: as an emerging molecular target.
        J Surg Res. 2009; 153: 172-180
        • Abdel-Latif M.M.M.
        • O’Riordan J.
        • Windle H.J.
        • et al.
        NF-kappaB activation in esophageal adenocarcinoma: relationship to Barrett’s metaplasia, survival, and response to neoadjuvant chemoradiotherapy.
        Ann Surg. 2004; 239: 491-500
        • O’Riordan J.M.
        • Abdel-latif M.M.
        • Ravi N.
        • et al.
        Proinflammatory cytokine and nuclear factor kappa-B expression along the inflammation–metaplasia–dysplasia–adenocarcinoma sequence in the esophagus.
        Am J Gastroenterol. 2005; 100: 1257-1264
        • Jenkins G.J.
        • Harries K.
        • Doak S.H.
        • et al.
        The bile acid deoxycholic acid (DCA) at neutral pH activates NF-kappaB and induces IL-8 expression in oesophageal cells in vitro.
        Carcinogenesis. 2004; 25: 317-323
        • Izzo J.G.
        • Malhotra U.
        • Wu T.T.
        • et al.
        Association of activated transcription factor nuclear factor kappaB with chemoradiation resistance and poor outcome in esophageal carcinoma.
        J Clin Oncol. 2006; 24: 748-754
      1. Beahrs O.H. Henson D.E. Hutter R.V.P. Oesophagus. Manual for Staging of Cancer. 3rd ed. J. P. Lippincott, Philadelphia1988: 63-67
        • Madrigal L.
        • Lynch S.
        • Feighery C.
        • et al.
        Flow cytometric analysis of surface major histocompatibility complex class II expression on human epithelial cells prepared from small intestinal biopsies.
        J Immunol Methods. 1993; 158: 207-214
        • Bradford M.M.
        A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding.
        Anal Biochem. 1976; 72: 248-254
        • Laemmli U.K.
        Cleavage of structural proteins during the assembly of the head of bacteriophage T4.
        Nature. 1970; 227: 680-685
        • Osborn L.
        • Kunkel S.
        • Nabel G.J.
        Tumor necrosis factor alpha and interleukin-1 stimulate the human immunodeficiency virus enhancer by activation of the nuclear factor kappa B.
        Proc Natl Acad Sci U S A. 1989; 86: 2336-2340
        • Ding G.J.
        • Fischer P.A.
        • Boltz R.C.
        • et al.
        Characterization and quantitation of NF-kappaB nuclear translocation induced by interleukin-1 and tumor necrosis factor-alpha. Development and use of a high capacity fluorescence cytometric system.
        J Biol Chem. 1998; 273: 28897-28905
        • Greten F.R.
        • Karin M.
        The IKK/NF-kappaB activation pathway-a target for prevention and treatment of cancer.
        Cancer Lett. 2004; 206: 193-199
        • Hayden M.S.
        • Ghosh S.
        Signaling to NF-kappaB.
        Genes Dev. 2004; 18: 2195-2224
        • Karin M.
        • Ben-Neriah Y.
        Phosphorylation meets ubiquitination: the control of NF-[kappa]B activity.
        Annu Rev Immunol. 2000; 18: 621-663
        • Jason A.
        • Gustin J.A.
        • Ozes O.N.
        • et al.
        Cell type-specific expression of the IκB kinases determines the significance of phosphatidylinositol 3-kinase/Akt signaling to NF-κB activation.
        J Biol Chem. 2004; 279: 1615-1620
        • Ghosh S.
        • Karin M.
        Missing pieces in the NF-kappaB puzzle.
        Cell. 2002; 109: S81-S96
        • Romieu-Mourez R.
        • Landesman-Bollag E.
        • Seldin D.C.
        • et al.
        Roles of IKK kinases and protein kinase CK2 in activation of nuclear factor-kappa.
        Cancer Res. 2001; 61: 3810-3818
        • Tamatani T.
        • Azuma M.
        • Aota K.
        • et al.
        Enhanced IkappaB kinase activity is responsible for the augmented activity of NF-kappaB in human head and neck carcinoma cells.
        Cancer Lett. 2001; 171: 165-172
        • Gasparian A.V.
        • Yao Y.J.
        • Kowalczyk D.
        • et al.
        The role of IKK in constitutive activation of NF-kappaB transcription factor in prostate carcinoma cells.
        J Cell Sci. 2002; 115: 141-151
        • Madrid L.V.
        • Wang C.Y.
        • Guttridge D.C.
        • et al.
        Akt suppresses apoptosis by stimulating the transactivation potential of the RelA/p65 subunit of NF-kappaB.
        Mol Cell Biol. 2000; 20: 1626-1638
        • Madrid L.V.
        • Mayo M.W.
        • Reuther J.Y.
        • et al.
        Akt stimulates the transactivation potential of the RelA/p65 Subunit of NF-kappa B through utilization of the Ikappa B kinase and activation of the mitogen activated protein kinase p38.
        J Biol Chem. 2001; 276: 18934-18940
        • Sizemore N.
        • Leung S.
        • Stark G.R.
        Activation of phosphatidylinositol 3-kinase in response to interleukin-1 leads to phosphorylation and activation of the NF-kappaB p65/RelA subunit.
        Mol Cell Biol. 1999; 19: 4798-4805
        • Carter A.B.
        • Hunninghake G.W.
        A constitutive active MEK → ERK pathway negatively regulates NF-kappa B-dependent gene expression by modulating TATA-binding protein phosphorylation.
        J Biol Chem. 2000; 275: 27858-27864
        • Surapisitchat J.
        • Hoefen R.J.
        • Pi X.
        • et al.
        Fluid shear stress inhibits TNF-alpha activation of JNK but not ERK1/2 or p38 in human umbilical vein endothelial cells: Inhibitory crosstalk among MAPK family members.
        Proc Natl Acad Sci U S A. 2001; 98: 6476-6481
        • Jenkins G.J.
        • D’Souza F.R.
        • Suzen S.H.
        • et al.
        Deoxycholic acid at neutral and acid pH, is genotoxic to oesophageal cells through the induction of ROS: the potential role of anti-oxidants in Barrett’s oesophagus.
        Carcinogenesis. 2007; 28: 136-142
        • Olliver J.R.
        • Hardie L.J.
        • Dexter S.
        • et al.
        DNA damage levels are raised in Barrett’s oesophageal mucosa relative to the squamous epithelium of the oesophagus.
        Biomarkers. 2003; 8: 509-521
        • Wetscher G.J.
        • Hinder P.R.
        • Bagchi D.
        • et al.
        Free radical scavengers prevent reflux esophagitis in rats.
        Dig Dis Sci. 1995; 40: 1292-1296
        • Oh T.Y.
        • Lee J.S.
        • Ahn B.O.
        • et al.
        Oxidative stress is more important than acid in the pathogenesis of reflux oesophagitis in rats.
        Gut. 2001; 49: 364-371
        • Oh T.Y.
        • Lee J.S.
        • Ahn B.O.
        • et al.
        Oxidative damages are critical in pathogenesis of reflux esophagitis: implication of antioxidants in its treatment.
        Free Radic Biol Med. 2001; 30: 905-915