Advertisement
Review| Volume 49, ISSUE 8, P2000-2009, May 2013

Download started.

Ok

Cancer gene expression signatures – The rise and fall?

  • Frederic Chibon
    Correspondence
    Tel.: +33 556330443; fax: +33 556330438.
    Affiliations
    INSERM U916: Genetic and Biology of Sarcomas, Department of Molecular Pathology, Institut Bergonié, 229 Cours de l’Argonne, CS61283, 33076 Bordeaux Cedex, France
    Search for articles by this author
Published:March 15, 2013DOI:https://doi.org/10.1016/j.ejca.2013.02.021

      Abstract

      A ‘gene expression signature’ can be defined as a single or a combined gene expression alteration with validated specificity in terms of diagnosis, prognosis or prediction of therapeutic response.
      Since the publication of the first signature in the late 90s, high-throughput gene expression analysis has revolutionised genetics over the last 15 years. The scientific community has used this new technology to find responses to these fundamental questions; from understanding tumour biology, to prediction of progression, and treatments to which it will respond.
      Nevertheless, legitimate excitement about the attractiveness of molecular technologies and the promise of discovery-based research should not overlook adherence to the rules of evidence, otherwise it may result in claims that are not meaningful and lead to disappointment. This review will thus focus on the approaches developed to answer these three fundamental questions and the results evidenced both at biological and clinical level. On looking at this huge amount of data that have become increasingly minute, and at times contradictory, we discuss how gene expression signature improve our understanding of cancer biology, our ability to predict progression and response, and finally, our capacity to treat cancers more efficiently.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to European Journal of Cancer
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Velculescu V.E.
        • Zhang L.
        • Vogelstein B.
        • Kinzler K.W.
        Serial analysis of gene expression.
        Science. 1995; 270: 484-487
        • Schena M.
        • Shalon D.
        • Davis R.W.
        • Brown P.O.
        Quantitative monitoring of gene expression patterns with a complementary DNA microarray.
        Science. 1995; 270: 467-470
        • DeRisi J.
        • Penland L.
        • Brown P.O.
        • et al.
        Use of a cDNA microarray to analyse gene expression patterns in human cancer.
        Nat Genet. 1996; 14: 457-460
        • van ‘t Veer L.J.
        • Dai H.
        • van de Vijver M.J.
        • et al.
        Gene expression profiling predicts clinical outcome of breast cancer.
        Nature. 2002; 415: 530-536
        • van de Vijver M.J.
        • He Y.D.
        • Van’t Veer L.J.
        • et al.
        A gene-expression signature as a predictor of survival in breast cancer.
        N Engl J Med. 2002; 347: 1999-2009
        • Golub T.R.
        • Slonim D.K.
        • Tamayo P.
        • et al.
        Molecular classification of cancer: class discovery and class prediction by gene expression monitoring.
        Science. 1999; 286: 531-537
        • Italiano A.
        Prognostic or predictive? It’s time to get back to definitions!.
        J Clin Oncol. 2011; 29: 4718-4719
        • Perou C.M.
        • Sorlie T.
        • Eisen M.B.
        • et al.
        Molecular portraits of human breast tumours.
        Nature. 2000; 406: 747-752
        • Sorlie T.
        • Perou C.M.
        • Tibshirani R.
        • et al.
        Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications.
        Proc Natl Acad Sci USA. 2001; 98: 10869-10874
        • Valk P.J.
        • Verhaak R.G.
        • Beijen M.A.
        • et al.
        Prognostically useful gene-expression profiles in acute myeloid leukemia.
        N Engl J Med. 2004; 350: 1617-1628
        • Bullinger L.
        • Dohner K.
        • Bair E.
        • et al.
        Use of gene-expression profiling to identify prognostic subclasses in adult acute myeloid leukemia.
        N Engl J Med. 2004; 350: 1605-1616
        • Francis P.
        • Namlos H.M.
        • Muller C.
        • et al.
        Diagnostic and prognostic gene expression signatures in 177 soft tissue sarcomas: hypoxia-induced transcription profile signifies metastatic potential.
        BMC Genomics. 2007; 8: 73
        • Radmacher M.D.
        • Marcucci G.
        • Ruppert A.S.
        • et al.
        Independent confirmation of a prognostic gene-expression signature in adult acute myeloid leukemia with a normal karyotype: a Cancer and Leukemia Group B study.
        Blood. 2006; 108: 1677-1683
        • Liu E.T.
        New technologies for high-throughput analysis.
        Pharmacogenomics. 2005; 6: 469-471
        • Bernards R.
        • Weinberg R.A.
        A progression puzzle.
        Nature. 2002; 418: 823
        • Fidler I.J.
        The pathogenesis of cancer metastasis: the ‘seed and soil’ hypothesis revisited.
        Nat Rev Cancer. 2003; 3: 453-458
        • Ye Q.H.
        • Qin L.X.
        • Forgues M.
        • et al.
        Predicting hepatitis B virus-positive metastatic hepatocellular carcinomas using gene expression profiling and supervised machine learning.
        Nat Med. 2003; 9: 416-423
        • Ramaswamy S.
        • Ross K.N.
        • Lander E.S.
        • Golub T.R.
        A molecular signature of metastasis in primary solid tumors.
        Nat Genet. 2003; 33: 49-54
        • Lenz G.
        • Wright G.
        • Dave S.S.
        • et al.
        Stromal gene signatures in large-B-cell lymphomas.
        N Engl J Med. 2008; 359: 2313-2323
        • Spentzos D.
        • Levine D.A.
        • Ramoni M.F.
        • et al.
        Gene expression signature with independent prognostic significance in epithelial ovarian cancer.
        J Clin Oncol. 2004; 22: 4700-4710
        • Farmer P.
        • Bonnefoi H.
        • Anderle P.
        • et al.
        A stroma-related gene signature predicts resistance to neoadjuvant chemotherapy in breast cancer.
        Nat Med. 2009; 15: 68-74
        • Rosenwald A.
        • Wright G.
        • Wiestner A.
        • et al.
        The proliferation gene expression signature is a quantitative integrator of oncogenic events that predicts survival in mantle cell lymphoma.
        Cancer Cell. 2003; 3: 185-197
        • Chang H.Y.
        • Nuyten D.S.
        • Sneddon J.B.
        • et al.
        Robustness, scalability, and integration of a wound-response gene expression signature in predicting breast cancer survival.
        Proc Natl Acad Sci USA. 2005; 102: 3738-3743
        • Sotiriou C.
        • Wirapati P.
        • Loi S.
        • et al.
        Gene expression profiling in breast cancer: understanding the molecular basis of histologic grade to improve prognosis.
        J Natl Cancer Inst. 2006; 98: 262-272
        • Carter S.L.
        • Eklund A.C.
        • Kohane I.S.
        • Harris L.N.
        • Szallasi Z.
        A signature of chromosomal instability inferred from gene expression profiles predicts clinical outcome in multiple human cancers.
        Nat Genet. 2006; 38: 1043-1048
        • Chibon F.
        • Lagarde P.
        • Salas S.
        • et al.
        Validated prediction of clinical outcome in sarcomas and multiple types of cancer on the basis of a gene expression signature related to genome complexity.
        Nat Med. 2010; 16: 781-787
        • Lagarde P.
        • Perot G.
        • Kauffmann A.
        • et al.
        Mitotic checkpoints and chromosome instability are strong predictors of clinical outcome in gastrointestinal stromal tumors.
        Clin Cancer Res. 2012; 18: 826-838
        • Lagarde P.
        Przybyl J, Brulard C, et al. chromosome instability accounts for reverse metastatic outcomes of pediatric and adult synovial sarcomas.
        J Clin Oncol. 2013; 31: 608-615
        • Wurl P.
        • Kappler M.
        • Meye A.
        • et al.
        Co-expression of survivin and TERT and risk of tumour-related death in patients with soft-tissue sarcoma.
        Lancet. 2002; 359: 943-945
        • Adida C.
        • Berrebi D.
        • Peuchmaur M.
        • Reyes-Mugica M.
        • Altieri D.C.
        Anti-apoptosis gene, survivin, and prognosis of neuroblastoma.
        Lancet. 1998; 351: 882-883
        • Kappler M.
        • Kohler T.
        • Kampf C.
        • et al.
        Increased survivin transcript levels: an independent negative predictor of survival in soft tissue sarcoma patients.
        Int J Cancer. 2001; 95: 360-363
        • Paik S.
        • Shak S.
        • Tang G.
        • et al.
        A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer.
        N Engl J Med. 2004; 351: 2817-2826
        • Lossos I.S.
        • Czerwinski D.K.
        • Alizadeh A.A.
        • et al.
        Prediction of survival in diffuse large-B-cell lymphoma based on the expression of six genes.
        N Engl J Med. 2004; 350: 1828-1837
        • Tinker A.V.
        • Boussioutas A.
        • Bowtell D.D.
        The challenges of gene expression microarrays for the study of human cancer.
        Cancer Cell. 2006; 9: 333-339
        • Bacac M.
        • Provero P.
        • Mayran N.
        • Stehle J.C.
        • Fusco C.
        • Stamenkovic I.
        A mouse stromal response to tumor invasion predicts prostate and breast cancer patient survival.
        PLoS One. 2006; 1: e32
        • Planche A.
        • Bacac M.
        • Provero P.
        • et al.
        Identification of prognostic molecular features in the reactive stroma of human breast and prostate cancer.
        PLoS One. 2011; 6: e18640
        • Hoshida Y.
        • Villanueva A.
        • Kobayashi M.
        • et al.
        Gene expression in fixed tissues and outcome in hepatocellular carcinoma.
        N Engl J Med. 2008; 359: 1995-2004
        • Ma X.J.
        • Wang Z.
        • Ryan P.D.
        • et al.
        A two-gene expression ratio predicts clinical outcome in breast cancer patients treated with tamoxifen.
        Cancer Cell. 2004; 5: 607-616
        • Jansen M.P.
        • Sieuwerts A.M.
        • Look M.P.
        • et al.
        HOXB13-to-IL17BR expression ratio is related with tumor aggressiveness and response to tamoxifen of recurrent breast cancer: a retrospective study.
        J Clin Oncol. 2007; 25: 662-668
        • Chanrion M.
        • Negre V.
        • Fontaine H.
        • et al.
        A gene expression signature that can predict the recurrence of tamoxifen-treated primary breast cancer.
        Clin Cancer Res. 2008; 14: 1744-1752
        • Del R.M.
        • Molina F.
        • Bascoul-Mollevi C.
        • et al.
        Gene expression signature in advanced colorectal cancer patients select drugs and response for the use of leucovorin, fluorouracil, and irinotecan.
        J Clin Oncol. 2007; 25: 773-780
        • Chang J.C.
        • Wooten E.C.
        • Tsimelzon A.
        • et al.
        Gene expression profiling for the prediction of therapeutic response to docetaxel in patients with breast cancer.
        Lancet. 2003; 362: 362-369
        • Thuerigen O.
        • Schneeweiss A.
        • Toedt G.
        • et al.
        Gene expression signature predicting pathologic complete response with gemcitabine, epirubicin, and docetaxel in primary breast cancer.
        J Clin Oncol. 2006; 24: 1839-1845
        • Slamon D.J.
        • Leyland-Jones B.
        • Shak S.
        • et al.
        Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2.
        N Engl J Med. 2001; 344: 783-792
        • Druker B.J.
        • Talpaz M.
        • Resta D.J.
        • et al.
        Efficacy and safety of a specific inhibitor of the BCR–ABL tyrosine kinase in chronic myeloid leukemia.
        N Engl J Med. 2001; 344: 1031-1037
        • Hirota S.
        • Isozaki K.
        • Moriyama Y.
        • et al.
        Gain-of-function mutations of c-kit in human gastrointestinal stromal tumors.
        Science. 1998; 279: 577-580
        • Bild A.H.
        • Yao G.
        • Chang J.T.
        • et al.
        Oncogenic pathway signatures in human cancers as a guide to targeted therapies.
        Nature. 2006; 439: 353-357
        • Wei G.
        • Twomey D.
        • Lamb J.
        • et al.
        Gene expression-based chemical genomics identifies rapamycin as a modulator of MCL1 and glucocorticoid resistance.
        Cancer Cell. 2006; 10: 331-342
        • Hieronymus H.
        • Lamb J.
        • Ross K.N.
        • et al.
        Gene expression signature-based chemical genomic prediction identifies a novel class of HSP90 pathway modulators.
        Cancer Cell. 2006; 10: 321-330
        • Shi L.
        • Reid L.H.
        • Jones W.D.
        • et al.
        The MicroArray Quality Control (MAQC) project shows inter- and intraplatform reproducibility of gene expression measurements.
        Nat Biotechnol. 2006; 24: 1151-1161
        • Shi L.
        • Campbell G.
        • Jones W.D.
        • et al.
        The MicroArray Quality Control (MAQC)-II study of common practices for the development and validation of microarray-based predictive models.
        Nat Biotechnol. 2010; 28: 827-838
        • Beck A.H.
        • Weng Z.
        • Witten D.M.
        • et al.
        3′-end sequencing for expression quantification (3SEQ) from archival tumor samples.
        PLoS One. 2010; 5: e8768
        • Michiels S.
        • Koscielny S.
        • Hill C.
        Interpretation of microarray data in cancer.
        Br J Cancer. 2007; 96: 1155-1158
        • Venet D.
        • Dumont J.E.
        • Detours V.
        Most random gene expression signatures are significantly associated with breast cancer outcome.
        PLoS Comput Biol. 2011; 7: e1002240
        • Dunkler D.
        • Michiels S.
        • Schemper M.
        Gene expression profiling: does it add predictive accuracy to clinical characteristics in cancer prognosis?.
        Eur J Cancer. 2007; 43: 745-751
        • Yamaguchi U.
        • Nakayama R.
        • Honda K.
        • et al.
        Distinct gene expression-defined classes of gastrointestinal stromal tumor.
        J Clin Oncol. 2008; 26: 4100-4108
        • Janoueix-Lerosey I.
        • Schleiermacher G.
        • Michels E.
        • et al.
        Overall genomic pattern is a predictor of outcome in neuroblastoma.
        J Clin Oncol. 2009; 27: 1026-1033