Advertisement
Review| Volume 45, ISSUE 7, P1137-1145, May 2009

Epigenetic therapies in haematological malignancies: Searching for true targets

  • Lucia Altucci
    Affiliations
    Dipartimento di Patologia Generale, Seconda Università degli Studi di Napoli, Vico L. De Crecchio 7, 80138 Napoli, Italy
    Search for articles by this author
  • Saverio Minucci
    Correspondence
    Corresponding author: Address: European Institute of Oncology, Via Adamello 16, 20100 Milan, Italy. Tel.: +39 02 57489832; fax: +39 02 94375090.
    Affiliations
    European Institute of Oncology, Via Adamello 16, 20100 Milan, Italy

    Department of Biomolecular Sciences and Biotechnologies, University of Milan, Via Celoria 26, 20100 Milan, Italy
    Search for articles by this author
Published:April 06, 2009DOI:https://doi.org/10.1016/j.ejca.2009.03.001

      Abstract

      Epigenetic alterations complement genetic mutations as a molecular mechanism leading to cell transformation, and maintenance of the cancer phenotype. Of note, they are reversible by pharmacological manipulation of the enzymes responsible for chromatin modification: indeed, epigenetic drugs (histone deacetylase inhibitors and DNA demethylating agents) are currently on the market, inducing proliferative arrest and death of tumor cells. These drugs, however, have been effective only in a few tumor types: the lack of consistent clinical results is mainly due to their use in a poorly targeted approach, since the epigenetic alterations present in cancer cells are mostly unknown. In a few cases (notably, leukemias expressing RAR and MLL fusion proteins), the molecular mechanisms underlying tumor-selective and tumor-specific epigenetic alterations have started to be deciphered. These studies are revealing a dazzling complexity in the mechanisms leading to alterations of the epigenome, and the need of combination therapies targeting different chromatin modifiers to reach an effective reversion of epigenetic alterations.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to European Journal of Cancer
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Altucci L.
        • Stunnenberg H.G.
        Time for epigenetics.
        Int J Biochem Cell Biol. 2009; 41: 2-3
        • Baylin S.B.
        • Schuebel K.E.
        Genomic biology: the epigenomic era opens.
        Nature. 2007; 448: 548-549
        • Esteller M.
        Epigenetics in cancer.
        N Engl J Med. 2008; 358: 1148-1159
        • Jones P.A.
        • Baylin S.B.
        The epigenomics of cancer.
        Cell. 2007; 128: 683-692
        • Ballestar E.
        • Esteller M.
        Epigenetic gene regulation in cancer.
        Adv Genet. 2008; 61: 247-267
        • Hait W.N.
        • Hambley T.W.
        Targeted cancer therapeutics.
        Cancer Res. 2009; 69 ([discussion 1267]): 1263-1267
        • Druker B.J.
        Translation of the Philadelphia chromosome into therapy for CML.
        Blood. 2008; 112: 4808-4817
        • Walker
        Do molecularly targeted agents in oncology have reduced attrition rates?.
        Nat Rev Drug Discov. 2009; 8: 15-17
        • Mai A.
        • Altucci L.
        Epi-drugs to fight cancer: from chemistry to cancer treatment, the road ahead.
        Int J Biochem Cell Biol. 2009; 41: 199-213
        • Minucci S.
        • Pelicci P.G.
        Histone deacetylase inhibitors and the promise of epigenetic (and more) treatments for cancer.
        Nat Rev Cancer. 2006; 6: 38-51
        • Bolden J.E.
        • Peart M.J.
        • Johnstone R.W.
        Anticancer activities of histone deacetylase inhibitors.
        Nat Rev Drug Discov. 2006; 5: 769-784
        • Insinga A.
        • Monestiroli S.
        • Ronzoni S.
        • et al.
        Inhibitors of histone deacetylases induce tumor-selective apoptosis through activation of the death receptor pathway.
        Nat Med. 2005; 11: 71-76
        • Nebbioso A.
        • Clarke N.
        • Voltz E.
        • et al.
        Tumor-selective action of HDAC inhibitors involves TRAIL induction in acute myeloid leukemia cells.
        Nat Med. 2005; 11: 77-84
        • Lindemann R.K.
        • Newbold A.
        • Whitecross K.F.
        • et al.
        Analysis of the apoptotic and therapeutic activities of histone deacetylase inhibitors by using a mouse model of B cell lymphoma.
        Proc Natl Acad Sci USA. 2007; 104: 8071-8076
        • Fandy T.E.
        • Shankar S.
        • Ross D.D.
        • Sausville E.
        • Srivastava R.K.
        Interactive effects of HDAC inhibitors and TRAIL on apoptosis are associated with changes in mitochondrial functions and expressions of cell cycle regulatory genes in multiple myeloma.
        Neoplasia. 2005; 7: 646-657
        • Rosato R.R.
        • Grant S.
        Histone deacetylase inhibitors: insights into mechanisms of lethality.
        Expert Opin Ther Targets. 2005; 9: 809-824
        • Arts J.
        • Angibaud P.
        • Marien A.
        • et al.
        R306465 is a novel potent inhibitor of class I histone deacetylases with broad-spectrum antitumoral activity against solid and haematological malignancies.
        Br J Cancer. 2007; 97: 1344-1353
        • Remiszewski S.W.
        • Sambucetti L.C.
        • Bair K.W.
        • et al.
        N-hydroxy-3-phenyl-2-propenamides as novel inhibitors of human histone deacetylase with in vivo antitumor activity: discovery of (2E)-N-hydroxy-3-[4-[[(2-hydroxyethyl)[2-(1H-indol-3-yl)ethyl]amino]methyl ]phenyl]-2-propenamide (NVP-LAQ824).
        J Med Chem. 2003; 46: 4609-4624
        • Khan N.
        • Jeffers M.
        • Kumar S.
        • et al.
        Determination of the class and isoform selectivity of small-molecule histone deacetylase inhibitors.
        Biochem J. 2008; 409: 581-589
        • Qian X.
        • Ara G.
        • Mills E.
        • LaRochelle W.J.
        • Lichenstein H.S.
        • Jeffers M.
        Activity of the histone deacetylase inhibitor belinostat (PXD101) in preclinical models of prostate cancer.
        Int J Cancer. 2008; 122: 1400-1410
        • Steele N.L.
        • Plumb J.A.
        • Vidal L.
        • et al.
        A phase 1 pharmacokinetic and pharmacodynamic study of the histone deacetylase inhibitor belinostat in patients with advanced solid tumors.
        Clin Cancer Res. 2008; 14: 804-810
        • Byrd J.C.
        • Marcucci G.
        • Parthun M.R.
        • et al.
        A phase 1 and pharmacodynamic study of depsipeptide (FK228) in chronic lymphocytic leukemia and acute myeloid leukemia.
        Blood. 2005; 105: 959-967
        • Piekarz R.L.
        • Robey R.
        • Sandor V.
        • et al.
        Inhibitor of histone deacetylation, depsipeptide (FR901228), in the treatment of peripheral and cutaneous T-cell lymphoma: a case report.
        Blood. 2001; 98: 2865-2868
        • Piekarz R.L.
        • Frye A.R.
        • Wright J.J.
        • et al.
        Cardiac studies in patients treated with depsipeptide, FK228, in a phase II trial for T-cell lymphoma.
        Clin Cancer Res. 2006; 12: 3762-3773
        • Lucas D.M.
        • Davis M.E.
        • Parthun M.R.
        • et al.
        The histone deacetylase inhibitor MS-275 induces caspase-dependent apoptosis in B-cell chronic lymphocytic leukemia cells.
        Leukemia. 2004; 18: 1207-1214
        • Qian D.Z.
        • Wei Y.F.
        • Wang X.
        • Kato Y.
        • Cheng L.
        • Pili R.
        Antitumor activity of the histone deacetylase inhibitor MS-275 in prostate cancer models.
        Prostate. 2007; 67: 1182-1193
        • Hess-Stumpp H.
        • Bracker T.U.
        • Henderson D.
        • Politz O.
        MS-275, a potent orally available inhibitor of histone deacetylases – the development of an anticancer agent.
        Int J Biochem Cell Biol. 2007; 39: 1388-1405
        • Moradei O.M.
        • Mallais T.C.
        • Frechette S.
        • et al.
        Novel aminophenyl benzamide-type histone deacetylase inhibitors with enhanced potency and selectivity.
        J Med Chem. 2007; 50: 5543-5546
        • Bali P.
        • Pranpat M.
        • Bradner J.
        • et al.
        Inhibition of histone deacetylase 6 acetylates and disrupts the chaperone function of heat shock protein 90: a novel basis for antileukemia activity of histone deacetylase inhibitors.
        J Biol Chem. 2005; 280: 26729-26734
        • Carew J.S.
        • Giles F.J.
        • Nawrocki S.T.
        Histone deacetylase inhibitors: mechanisms of cell death and promise in combination cancer therapy.
        Cancer Lett. 2008; 269: 7-17
        • George P.
        • Bali P.
        • Annavarapu S.
        • et al.
        Combination of the histone deacetylase inhibitor LBH589 and the hsp90 inhibitor 17-AAG is highly active against human CML-BC cells and AML cells with activating mutation of FLT-3.
        Blood. 2005; 105: 1768-1776
        • Heider U.
        • von Metzler I.
        • Kaiser M.
        • et al.
        Synergistic interaction of the histone deacetylase inhibitor SAHA with the proteasome inhibitor bortezomib in mantle cell lymphoma.
        Eur J Haematol. 2008; 80: 133-142
        • Nawrocki S.T.
        • Carew J.S.
        • Maclean K.H.
        • et al.
        Myc regulates aggresome formation, the induction of Noxa, and apoptosis in response to the combination of bortezomib and SAHA.
        Blood. 2008; 112: 2917-2926
        • Robertson K.D.
        • Wolffe A.P.
        DNA methylation in health and disease.
        Nat Rev Genet. 2000; 1: 11-19
        • Silverman L.R.
        • Demakos E.P.
        • Peterson B.L.
        • et al.
        Randomized controlled trial of azacitidine in patients with the myelodysplastic syndrome: a study of the cancer and leukemia group B.
        J Clin Oncol. 2002; 20: 2429-2440
        • Kantarjian H.M.
        • O’Brien S.
        • Cortes J.
        • et al.
        Results of decitabine (5-aza-2′-deoxycytidine) therapy in 130 patients with chronic myelogenous leukemia.
        Cancer. 2003; 98: 522-528
        • Yang A.S.
        • Doshi K.D.
        • Choi S.W.
        • et al.
        DNA methylation changes after 5-aza-2′-deoxycytidine therapy in patients with leukemia.
        Cancer Res. 2006; 66: 5495-5503
        • Gaudet F.
        • Hodgson J.G.
        • Eden A.
        • et al.
        Induction of tumors in mice by genomic hypomethylation.
        Science. 2003; 300: 489-492
        • Kantarjian H.M.
        • O’Brien S.
        • Huang X.
        • et al.
        Survival advantage with decitabine versus intensive chemotherapy in patients with higher risk myelodysplastic syndrome: comparison with historical experience.
        Cancer. 2007; 109: 1133-1137
        • Fenaux P.
        • Mufti G.J.
        • Hellstrom-Lindberg E.
        • et al.
        Efficacy of azacitidine compared with that of conventional care regimens in the treatment of higher-risk myelodysplastic syndromes: a randomised, open-label, phase III study.
        Lancet Oncol. 2009; 10: 223-232
        • Cameron E.E.
        • Bachman K.E.
        • Myohanen S.
        • Herman J.G.
        • Baylin S.B.
        Synergy of demethylation and histone deacetylase inhibition in the re-expression of genes silenced in cancer.
        Nat Genet. 1999; 21: 103-107
        • Soriano A.O.
        • Yang H.
        • Faderl S.
        • et al.
        Safety and clinical activity of the combination of 5-azacytidine, valproic acid, and all-trans retinoic acid in acute myeloid leukemia and myelodysplastic syndrome.
        Blood. 2007; 110: 2302-2308
        • Garcia-Manero G.
        • Assouline S.
        • Cortes J.
        • et al.
        Phase 1 study of the oral isotype specific histone deacetylase inhibitor MGCD0103 in leukemia.
        Blood. 2008; 112: 981-989
        • Jain N.
        • Rossi A.
        • Garcia-Manero G.
        Epigenetic therapy of leukemia: an update.
        Int J Biochem Cell Biol. 2009; 41: 72-80
        • Zhou L.
        • Cheng X.
        • Connolly B.A.
        • Dickman M.J.
        • Hurd P.J.
        • Hornby D.P.
        Zebularine: a novel DNA methylation inhibitor that forms a covalent complex with DNA methyltransferases.
        J Mol Biol. 2002; 321: 591-599
        • Holleran J.L.
        • Parise R.A.
        • Joseph E.
        • et al.
        Plasma pharmacokinetics, oral bioavailability, and interspecies scaling of the DNA methyltransferase inhibitor, zebularine.
        Clin Cancer Res. 2005; 11: 3862-3868
        • Pina I.C.
        • Gautschi J.T.
        • Wang G.Y.
        • et al.
        Psammaplins from the sponge Pseudoceratina purpurea: inhibition of both histone deacetylase and DNA methyltransferase.
        J Org Chem. 2003; 68: 3866-3873
        • Brueckner B.
        • Boy R.G.
        • Siedlecki P.
        • et al.
        Epigenetic reactivation of tumor suppressor genes by a novel small-molecule inhibitor of human DNA methyltransferases.
        Cancer Res. 2005; 65: 6305-6311
        • Collins S.J.
        Retinoic acid receptors, hematopoiesis and leukemogenesis.
        Curr Opin Hematol. 2008; 15: 346-351
        • Minucci S.
        • Pelicci P.G.
        Retinoid receptors in health and disease: co-regulators and the chromatin connection.
        Semin Cell Dev Biol. 1999; 10: 215-225
        • Kamashev D.
        • Vitoux D.
        • De Thé H.
        PML-RARA-RXR oligomers mediate retinoid and rexinoid/cAMP cross-talk in acute promyelocytic leukemia cell differentiation.
        J Exp Med. 2004; 199: 1163-1174
        • Minucci S.
        • Nervi C.
        • Lo Coco F.
        • Pelicci P.G.
        Histone deacetylases: a common molecular target for differentiation treatment of acute myeloid leukemias?.
        Oncogene. 2001; 20: 3110-3115
        • Carbone R.
        • Botrugno O.A.
        • Ronzoni S.
        • et al.
        Recruitment of the histone methyltransferase SUV39H1 and its role in the oncogenic properties of the leukemia-associated PML-retinoic acid receptor fusion protein.
        Mol Cell Biol. 2006; 26: 1288-1296
        • Di Croce L.
        • Raker V.A.
        • Corsaro M.
        • et al.
        Methyltransferase recruitment and DNA hypermethylation of target promoters by an oncogenic transcription factor.
        Science. 2002; 295: 1079-1082
        • Morey L.
        • Brenner C.
        • Fazi F.
        • et al.
        MBD3, a component of the NuRD complex, facilitates chromatin alteration and deposition of epigenetic marks.
        Mol Cell Biol. 2008; 28: 5912-5923
        • Villa R.
        • Pasini D.
        • Gutierrez A.
        • et al.
        Role of the polycomb repressive complex 2 in acute promyelocytic leukemia.
        Cancer Cell. 2007; 11: 513-525
        • Hoemme C.
        • Peerzada A.
        • Behre G.
        • et al.
        Chromatin modifications induced by PML-RARalpha repress critical targets in leukemogenesis as analyzed by ChIP-Chip.
        Blood. 2008; 111: 2887-2895
        • Dou Y.
        • Hess J.L.
        Mechanisms of transcriptional regulation by MLL and its disruption in acute leukemia.
        Int J Hematol. 2008; 87: 10-18
        • Milne T.A.
        • Briggs S.D.
        • Brock H.W.
        • et al.
        MLL targets SET domain methyltransferase activity to Hox gene promoters.
        Mol Cell. 2002; 10: 1107-1117
        • Nakamura T.
        • Mori T.
        • Tada S.
        • et al.
        ALL-1 is a histone methyltransferase that assembles a supercomplex of proteins involved in transcriptional regulation.
        Mol Cell. 2002; 10: 1119-1128
        • Ernst P.
        • Mabon M.
        • Davidson A.J.
        • Zon L.I.
        • Korsmeyer S.J.
        An Mll-dependent Hox program drives hematopoietic progenitor expansion.
        Curr Biol. 2004; 14: 2063-2069
        • Zeisig B.B.
        • Cheung N.
        • Yeung J.
        • So C.W.
        Reconstructing the disease model and epigenetic networks for MLL-AF4 leukemia.
        Cancer Cell. 2008; 14: 345-347
        • Okada Y.
        • Feng Q.
        • Lin Y.
        • et al.
        HDOT1L links histone methylation to leukemogenesis.
        Cell. 2005; 121: 167-178
        • Krivtsov A.V.
        • Feng Z.
        • Lemieux M.E.
        • et al.
        H3K79 methylation profiles define murine and human MLL-AF4 leukemias.
        Cancer Cell. 2008; 14: 355-368
        • Guenther M.G.
        • Lawton L.N.
        • Rozovskaia T.
        • et al.
        Aberrant chromatin at genes encoding stem cell regulators in human mixed-lineage leukemia.
        Genes Dev. 2008; 22: 3403-3408
        • Cheung N.
        • Chan L.C.
        • Thompson A.
        • Cleary M.L.
        • So C.W.
        Protein arginine-methyltransferase-dependent oncogenesis.
        Nat Cell Biol. 2007; 9: 1208-1215
        • Fazi F.
        • Zardo G.
        • Gelmetti V.
        • et al.
        Heterochromatic gene repression of the retinoic acid pathway in acute myeloid leukemia.
        Blood. 2007; 109: 4432-4440
        • Lemercier C.
        • Brocard M.P.
        • Puvion-Dutilleul F.
        • Kao H.Y.
        • Albagli O.
        • Khochbin S.
        Class II histone deacetylases are directly recruited by BCL6 transcriptional repressor.
        J Biol Chem. 2002; 277: 22045-22052
        • David G.
        • Alland L.
        • Hong S.H.
        • Wong C.W.
        • DePinho R.A.
        • Dejean A.
        Histone deacetylase associated with mSin3A mediates repression by the acute promyelocytic leukemia-associated PLZF protein.
        Oncogene. 1998; 16: 2549-2556
        • Dhordain P.
        • Albagli O.
        • Lin R.J.
        • et al.
        Corepressor SMRT binds the BTB/POZ repressing domain of the LAZ3/BCL6 oncoprotein.
        Proc Natl Acad Sci USA. 1997; 94: 10762-10767
        • Yang X.J.
        The diverse superfamily of lysine acetyltransferases and their roles in leukemia and other diseases.
        Nucl Acids Res. 2004; 32: 959-976
        • So C.W.
        • Cleary M.L.
        Dimerization: a versatile switch for oncogenesis.
        Blood. 2004; 104: 919-922
        • Golub T.R.
        • Slonim D.K.
        • Tamayo P.
        • et al.
        Molecular classification of cancer: class discovery and class prediction by gene expression monitoring.
        Science. 1999; 286: 531-537
        • Krivtsov A.V.
        • Armstrong S.A.
        MLL translocations, histone modifications and leukaemia stem-cell development.
        Nat Rev Cancer. 2007; 7: 823-833
        • Puccetti E.
        • Ruthardt M.
        Acute promyelocytic leukemia: PML/RARalpha and the leukemic stem cell.
        Leukemia. 2004; 18: 1169-1175
        • Bereshchenko O.R.
        • Gu W.
        • Dalla-Favera R.
        Acetylation inactivates the transcriptional repressor BCL6.
        Nat Genet. 2002; 32: 606-613
        • Insinga A.
        • Monestiroli S.
        • Ronzoni S.
        • et al.
        Impairment of p53 acetylation, stability and function by an oncogenic transcription factor.
        EMBO J. 2004; 23: 1144-1154
        • Kim S.C.
        • Sprung R.
        • Chen Y.
        • et al.
        Substrate and functional diversity of lysine acetylation revealed by a proteomics survey.
        Mol Cell. 2006; 23: 607-618
        • Huang J.
        • Sengupta R.
        • Espejo A.B.
        • et al.
        P53 is regulated by the lysine demethylase LSD1.
        Nature. 2007; 449: 105-108
        • Esteller M.
        Cancer epigenomics: DNA methylomes and histone-modification maps.
        Nat Rev Genet. 2007; 8: 286-298
        • Gargiulo G.
        • Minucci S.
        Epigenomic profiling of cancer cells.
        Int J Biochem Cell Biol. 2008; 41: 127-135
        • Gargiulo G.
        • Levy S.
        • Bucci G.
        • et al.
        NA-Seq: a discovery tool for the analysis of chromatin structure and dynamics during differentiation.
        Dev Cell. 2009; 16: 466-481