Research Article| Volume 45, ISSUE 7, P1201-1208, May 2009

Daily clinical practice of fresh tumour tissue freezing and gene expression profiling; logistics pilot study preceding the MINDACT trial

Published:February 17, 2009DOI:



      The 70-gene prognosis-signature is a prognostic tool for early breast cancer analysis. In addition to scientific evidence, implementation of the signature in clinical trials and daily practice requires logistical feasibility. The aim of our study was to test logistics for gene expression profiling on fresh frozen tumour tissue in the preparation for the prospective, multinational Microarray In Node-negative Disease may Avoid ChemoTherapy (MINDACT) trial.


      Sixty-four patients were included in six European hospitals. Fresh frozen tumour samples were shipped on dry ice to Agendia B.V., where RNA was isolated and subsequently hybridised on the 70-gene prognosis-signature (MammaPrint™).


      Tumour samples were obtained in 60 of 64 patients. Among the 60 samples, 11 contained insufficient tumour cells (<50%) and three contained insufficient RNA quality. All 46 samples eligible for genomic profiling were successfully hybridised, and the results were reported on average within 4–5 d.


      Gene expression profiling on fresh frozen tissue is feasible in daily clinical practice.


      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to European Journal of Cancer
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Perou C.M.
        • Sorlie T.
        • Eisen M.B.
        • et al.
        Molecular portraits of human breast tumours.
        Nature. 2000; 406: 747-752
        • van’t Veer L.J.
        • Dai H.
        • van de Vijver M.J.
        • et al.
        Gene expression profiling predicts clinical outcome of breast cancer.
        Nature. 2002; 415: 530-536
        • van de Vijver M.J.
        • He Y.D.
        • van ‘t Veer L.J.
        • et al.
        A gene-expression signature as a predictor of survival in breast cancer.
        New Engl J Med. 2002; 347: 1999-2009
        • Chang J.C.
        • Wooten E.C.
        • Tsimelzon A.
        • et al.
        Gene expression profiling for the prediction of therapeutic response to docetaxel in patients with breast cancer.
        Lancet. 2003; 362: 362-369
        • Paik S.
        • Shak S.
        • Tang G.
        • et al.
        A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer.
        New Engl J Med. 2004; 351: 2817-2826
        • Chang H.Y.
        • Nuyten D.S.A.
        • Sneddon J.B.
        • et al.
        Robustness, scalability, and integration of a wound-response gene expression signature in predicting breast cancer survival.
        Proc Natl Acad Sci USA. 2005; 102: 3738-3743
        • Gianni L.
        • Zambetti M.
        • Clark K.
        • et al.
        Gene expression profiles in paraffin-embedded core biopsy tissue predict response to chemotherapy in women with locally advanced breast cancer.
        J Clin Oncol. 2005; 23: 7265-7277
        • Hannemann J.
        • Oosterkamp H.M.
        • Bosch C.A.
        • et al.
        Changes in gene expression associated with response to neoadjuvant chemotherapy in breast cancer.
        J Clin Oncol. 2005; 23: 3331-3342
        • Iwao-Koizumi K.
        • Matoba R.
        • Ueno N.
        • et al.
        Prediction of docetaxel response in human breast cancer by gene expression profiling.
        J Clin Oncol. 2005; 23: 422-431
        • Rouzier R.
        • Perou C.M.
        • Symmans W.F.
        • et al.
        Breast cancer molecular subtypes respond differently to preoperative chemotherapy.
        Clin Cancer Res. 2005; 11: 5678-5685
        • Wang Y.
        • Klijn J.G.
        • Zhang Y.
        • et al.
        Gene-expression profiles to predict distant metastasis of lymph-node-negative primary breast cancer.
        Lancet. 2005; 365: 671-679
        • Hess K.R.
        • Anderson K.
        • Symmans W.F.
        • et al.
        Pharmacogenomic predictor of sensitivity to preoperative chemotherapy with paclitaxel and fluorouracil, doxorubicin, and cyclophosphamide in breast cancer.
        J Clin Oncol. 2006; 24: 4236-4244
        • Potti A.
        • Dressman H.K.
        • Bild A.
        • et al.
        Genomic signatures to guide the use of chemotherapeutics.
        Nat Med. 2006; 12: 1294-1300
        • Sotiriou C.
        • Wirapati P.
        • Loi S.
        • et al.
        Gene expression profiling in breast cancer: understanding the molecular basis of histologic grade to improve prognosis.
        J Natl Cancer Inst. 2006; 98: 262-272
        • Thuerigen O.
        • Schneeweiss A.
        • Toedt G.
        • et al.
        Gene expression signature predicting pathologic complete response with gemcitabine, epirubicin, and docetaxel in primary breast cancer.
        J Clin Oncol. 2006; 24: 1839-1845
        • Bonnefoi H.
        • Potti A.
        • Delorenzi M.
        • et al.
        Validation of gene signatures that predict the response of breast cancer to neoadjuvant chemotherapy: a substudy of the EORTC 10994/BIG 00-01 clinical trial.
        Lancet Oncol. 2007; 8: 1071-1078
        • Buyse M.
        • Loi S.
        • van’t Veer L.
        • et al.
        Validation and clinical utility of a 70-gene prognostic signature for women with node-negative breast cancer.
        J Natl Cancer Inst. 2006; 98: 1183-1192
      1. Bueno-de-Mesquita JM, Linn SC, Keijzer R, et al. Validation of 70-gene prognosis signature in node-negative breast cancer. Breast Cancer Res Treat [in press].

      2. Mook S, Schmidt MK, Viale G, et al. The 70-gene prognosis-signature predicts disease outcome in breast cancer patients with 1–3 positive lymph nodes in an independent validation study. Breast Cancer Res Treat [in press].

        • Wittner B.S.
        • Sgroi D.C.
        • Ryan P.D.
        • et al.
        Analysis of the MammaPrint breast cancer assay in a predominantly postmenopausal cohort.
        Clin Cancer Res. 2008; 14: 2988-2993
        • Masuda N.
        • Ohnishi T.
        • Kawamoto S.
        • Monden M.
        • Okubo K.
        Analysis of chemical modification of RNA from formalin-fixed samples and optimization of molecular biology applications for such samples.
        Nucl Acids Res. 1999; 27: 4436-4443
        • Cronin M.
        • Pho M.
        • Dutta D.
        • et al.
        Measurement of gene expression in archival paraffin-embedded tissues: development and performance of a 92-gene reverse transcriptase-polymerase chain reaction assay.
        Am J Pathol. 2004; 164: 35-42
        • Vonsattel J.P.
        • Aizawa H.
        • Ge P.
        • et al.
        An improved approach to prepare human brains for research.
        J Neuropathol Exp Neurol. 1995; 54: 42-56
        • Bueno-de-Mesquita J.M.
        • van Harten W.H.
        • Retel V.P.
        • et al.
        Use of 70-gene signature to predict prognosis of patients with node-negative breast cancer: a prospective community-based feasibility study (RASTER).
        Lancet Oncol. 2007; 8: 1079-1087
        • Bogaerts J.
        • Cardoso F.
        • Buyse M.
        • et al.
        Gene signature evaluation as a prognostic tool: challenges in the design of the MINDACT trial.
        Nat Clin Pract Oncol. 2006; 3: 540-551
        • Mook S.
        • van’t Veer L.J.
        • Rutgers E.J.
        • Piccart-Gebhart M.J.
        • Cardoso F.
        Individualization of therapy using Mammaprint: from development to the MINDACT trial.
        Cancer Genom Proteom. 2007; 4: 147-155
        • Cardoso F.
        • Van’t Veer L.
        • Rutgers E.
        • Loi S.
        • Mook S.
        • Piccart-Gebhart M.J.
        Clinical application of the 70-gene profile: the MINDACT trial.
        J Clin Oncol. 2008; 26: 729-735
        • Glas A.M.
        • Floore A.
        • Delahaye L.J.
        • et al.
        Converting a breast cancer microarray signature into a high-throughput diagnostic test.
        BMC Genom. 2006; 7: 278-287
        • Camp R.L.
        • Charette L.A.
        • Rimm D.L.
        Validation of tissue microarray technology in breast carcinoma.
        Lab Invest. 2000; 80: 1943-1949
        • Bammler T.
        • Beyer R.P.
        • Bhattacharya S.
        • et al.
        Standardizing global gene expression analysis between laboratories and across platforms.
        Nat Meth. 2005; 2: 351-356
        • Dobbin K.K.
        • Beer D.G.
        • Meyerson M.
        • et al.
        Interlaboratory comparability study of cancer gene expression analysis using oligonucleotide microarrays.
        Clin Cancer Res. 2005; 11: 565-572
        • Irizarry R.A.
        • Warren D.
        • Spencer F.
        • et al.
        Multiple-laboratory comparison of microarray platforms.
        Nat Meth. 2005; 2: 345-350
        • Florell S.R.
        • Coffin C.M.
        • Holden J.A.
        • et al.
        Preservation of RNA for functional genomic studies: a multidisciplinary tumor bank protocol.
        Mod Pathol. 2001; 14: 116-128
        • Mutter G.L.
        • Zahrieh D.
        • Liu C.
        • et al.
        Comparison of frozen and RNALater solid tissue storage methods for use in RNA expression microarrays.
        BMC Genom. 2004; 5: 88-94
        • Leyland-Jones B.R.
        • Ambrosone C.B.
        • Bartlett J.
        • et al.
        Recommendations for collection and handling of specimens from group breast cancer clinical trials.
        J Clin Oncol. 2008; 26: 5638-5644