Review| Volume 45, ISSUE 7, P1117-1128, May 2009

Resistance to EGF-R (erbB-1) and VEGF-R modulating agents

Published:January 05, 2009DOI:


      In an effort to improve the survival of cancer patients, new therapeutic approaches focusing on the molecular mechanisms that mediate tumour cell growth or survival have gained much attention. In particular, EGF-R and VEGF/VEGF-R have been extensively investigated as targets for anti-neoplastic therapy. Agents that selectively target EGF-R, erbB-2, VEGF-R-2 or VEGF have shown promising activity in clinical trials, and several are now approved for use in selected cancer indications. However, all patients ultimately develop resistance to these drugs. Thus, there is a great need to understand how patients become resistant to effective therapies for these cancers since this approach may lead to improvements in therapies that target EGF-R and VEGF/VEGF-R. Pre-clinical studies have begun to shed light on the mechanisms of resistance to anti-angiogenetic drugs and to date four mechanisms of resistance have been identified (1) upregulation of bFGF, (2) overexpression of MMP-9, (3) increased levels of SDF-1α and (4) HIF-1α-induced recruitment of bone marrow-derived CD45+ myeloid cells. In addition, the molecular mechanisms of resistance to EGF-R modulating agents can be attributed to several general processes: (1) activation of alternative tyrosine kinase inhibitors that bypass the EGF-R pathway (e.g. c-MET and IGF-1R), (2) increased angiogenesis, (3) constitutive activation of downstream mediators (e.g. PTEN and K-ras) and (4) the existence of specific EGF-R mutations. K-ras mutations have been significantly associated with a lack of response to EGF-R tyrosine kinase inhibitors in patients with NSCLC and with a lack of response to cetuximab or to panitumumab in patients with advanced colorectal cancer. The identification of these resistance mechanisms has led to clinical trials using newly designed targeted therapies that can overcome resistance and have shown promise in laboratory studies. Ongoing research efforts will likely continue to identify additional resistance mechanisms, and these findings will hopefully translate into effective therapies for different cancers.


      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to European Journal of Cancer
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Youssoufian H.
        • Hicklin D.J.
        • Rowinsky E.K.
        Review: monoclonal antibodies to the vascular endothelial growth factor receptor-2 in cancer therapy.
        Clin Cancer Res. 2007; 18: 5544s-5548s
        • Ciadiello F.
        • Tortora G.
        EGFR antagonists in cancer treatment.
        N Engl J Med. 2008; 358: 1160-1174
        • Kerbel R.S.
        Tumor angiogenesis.
        N Engl J Med. 2008; 358: 2039-2049
        • Harari P.M.
        • Allen G.W.
        • Bonner J.A.
        Biology of interactions: antiepidermal growth factor receptor agents.
        J Clin Oncol. 2007; 25: 4057-4065
        • Kumar A.
        • Petri E.T.
        • Halmos B.
        • Boggon T.J.
        Structure and clinical relevance of the epidermal growth factor receptor in human cancer.
        J Clin Oncol. 2008; 26: 1742-1751
        • Grant S.
        • Fisher P.B.
        • Dent P.
        The role of signal transduction pathways in drug and radiation resistance.
        Cancer Treat Res. 2002; 112: 89-108
        • Senger D.R.
        • Galli S.J.
        • Dvorak A.M.
        • Perruzzi C.A.
        • Harvey V.S.
        • Dvorak H.F.
        Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid.
        Science. 1983; 219: 983-985
        • Alitalo K.
        • Carmeliet P.
        Molecular mechanisms of lymphangiogenesis in health and disease.
        Cancer Cell. 2002; 3: 219-227
        • Hicklin D.J.
        • Ellis L.M.
        Role of the vascular endothelial growth factor pathway in tumor growth and angiogenesis.
        J Clin Oncol. 2005; 23: 1011-1027
        • Tassi E.
        • Wellstein A.
        The angiogenic switch molecule, secreted FGF-binding protein, an indicator of early stages of pancreatic and colorectal adenocarcinoma.
        Semin Oncol. 2006; 6: S50-S56
        • Blanckaert V.D.
        • Hebbar M.
        • Louchez M.M.
        • Vilain M.O.
        • Schelling M.E.
        • Peyrat J.P.
        Basic fibroblast growth factor receptors and their prognostic value in human breast cancer.
        Clin Cancer Res. 1998; 12: 2939-2947
        • Jaye M.
        • Schlessinger J.
        • Dionne C.A.
        Fibroblast growth factor receptor tyrosine kinases: molecular analysis and signal transduction.
        Biochim Biophys Acta. 1992; 35: 185-199
        • Deudero J.J.
        • Caramelo C.
        • Castellanos M.C.
        • et al.
        Induction of hypoxia-inducible factor-1alpha gene expression by vascular endothelial growth factor.
        J Biol Chem. 2008; 283: 11435-11444
        • Casanovas O.
        • Hicklin D.J.
        • Bergers G.
        • Hanahan D.
        Drug resistance by evasion of antiangiogenic targeting of VEGF signaling in late-stage pancreatic islet tumors.
        Cancer Cell. 2005; 8: 299-309
        • Nissen J.L.
        • Cao R.
        • Hedlung E.M.
        • et al.
        Angiogenic factors FGF2 and PDGF-BB synergistically promote murine tumor neovascularization and metastasis.
        J Clin Invest. 2007; 117: 2766-2777
        • Shi Y.H.
        • Bingle L.
        • Gong L.H.
        • Wang Y.X.
        • Corke K.P.
        • Fang W.G.
        Basic FGF augments hypoxia-induced HIF-1-alpha expression and VEGF release in T47D breast cancer cells.
        Pathology. 2007; 39: 396-400
      1. Dempke W Brivanib. A novel dual VEGF-R2/bFGF inhibitor. Anticancer Res 2009, in press.

        • Nelson A.R.
        • Fingleton B.
        • Rothenberg M.L.
        • Matrisian L.M.
        Matrix metalloproteinases: biologic activity and clinical implications.
        J Clin Oncol. 2000; 18: 1135-1149
        • Hiraoka N.
        • Allen E.
        • Apel I.J.
        • Gyetko M.R.
        • Weiss S.J.
        Matrix metalloproteinases regulate neovascularization by acting as pericellular fibrinolysins.
        Cell. 1998; 95: 365-377
        • Cornelius L.A.
        • Nehring L.C.
        • Harding E.
        • et al.
        Matrix metalloproteinases generate angiostatin: effects on neovascularization.
        J Immunol. 1998; 161: 6845-6852
        • Chung W.Y.
        • Hsiang Y.N.
        • Matzke L.A.
        • et al.
        Reduced expression of vascular endothelial growth factor paralleled with increased angiostatin expression resulting from the upregulated activities of matrix metalloproteinase-2 and -9 in human type 2 diabetic arterial vasculature.
        Circ Res. 2006; 99: 140-148
        • Hollborn M.
        • Stathopoulos C.
        • Steffen A.
        • Wiedemann P.
        • Kohen L.
        • Bringmann A.
        Positive feedback regulation between MMP-9 and VEGF in human RPE cells.
        Invest Ophthalmol Vis Sci. 2007; 48: 4360-4367
        • Ahn G.O.
        • Brown J.M.
        Matrix metalloproteinase-9 is required for tumor vasculogenesis but not for angiogenesis: role of bone marrow-derived myelomonocytic cells.
        Cancer Cell. 2008; 13: 193-205
        • Du R.
        • Lu K.V.
        • Petritsch C.
        • et al.
        HIF1alpha induces the recruitment of bone-marrow-derived vascular modulatory cells to regulate tumor angiogenesis and invasion.
        Cancer Cell. 2008; 13: 206-220
        • Lee C.Z.
        • Xue Z.
        • Zhu Y.
        • Yang G.Y.
        • Young W.L.
        Matrix metalloproteinase-9 inhibition attenuates vascular endothelial growth factor-induced intracerebral hemorrhage.
        Stroke. 2007; 38: 2563-2568
        • Mackay C.R.
        Chemokines: immunology’s high impact factors.
        Nat Immunol. 2001; 2: 95-101
        • Balabanian K.
        • Lagane B.
        • Infantino S.
        • et al.
        The chemokine SDF-1/CXCL12 binds to and signals through the orphan receptor RDC1 in T lymphocytes.
        J Biol Chem. 2005; 280: 35760-35766
        • Lima e Silva R.
        • Shen J.
        • Hackett S.J.
        • et al.
        The SDF-1/CXCR4 ligand/receptor pair is an important contributor to several types of ocular neovascularization.
        FASEB J. 2007; 21: 3219-3230
        • Woo I.S.
        • Hong S.H.
        • Byun J.H.
        • Kang J.H.
        • Jeon H.M.
        • Choi M.G.
        Circulating stromal cell derived factor-1alpha (SDF-1alpha) is predictive of distant metastasis in gastric carcinoma.
        Cancer Invest. 2008; 26: 256-261
        • Sawano A.
        • Iwai S.
        • Sakurai Y.
        • et al.
        Flt-1, vascular endothelial growth factor receptor 1, is a novel cell-surface marker for the lineage of monocyte-macrophages in humans.
        Blood. 2001; 97: 785-791
        • Reddy K.
        • Zhou Z.
        • Jia S.F.
        • et al.
        Stromal-cell-derived factor-1 stimulates vasculogenesis and enhances Ewing’s sarcoma tumor growth in the absence of vascular endothelial growth factor.
        Int J Cancer. 2008; 123: 831-837
        • Hong X.
        • Jiang F.
        • Kalkanis S.N.
        • et al.
        SDF-1 and CXCR4 are up-regulated by VEGF and contribute to glioma cell invasion.
        Cancer Lett. 2006; 236: 39-45
        • Grunewald M.
        • Avraham I.
        • Dor Y.
        • et al.
        VEGF-induced neovascularization: recruitment, retention, and role of accessory cells.
        Cell. 2006; 124: 175-189
        • Kopp H.G.
        • Ramos C.A.
        • Rafil S.
        Contribution of endothelial progenitors and proangiogenic hematopoietic cells to vascularization of tumor and ischemic tissue.
        Curr Opin Hematol. 2006; 13: 175-181
        • Li B.
        • Sharpe E.E.
        • Maupin A.B.
        • et al.
        VEGF and PIGF promote adult vasculogenesis by enhancing EPC recruitment and vessel formation at the site of tumor neovascularization.
        FASEB J. 2006; 20: 1710-1717
        • Semenza G.L.
        Regulation of mammalian O2 homeostasis by hypoxia-inducible factor-1.
        Annu Rev Cell Dev Biol. 1999; 15: 551-578
        • Lucarini G.
        • Zizzi A.
        • Belvederesi L.
        • Kyriakidou K.
        • Mazzucchelli R.
        • Biagini G.
        Increased VEGF165 expression in HCT116 colon cancer cells after transient transfection with a GFP vector encoding HIF-1 gene.
        J Exp Clin Cancer Res. 2007; 26: 515-519
        • Zagzag D.
        • Lukyanov Y.
        • Lan L.
        • et al.
        Hypoxia-inducible factor-1 and VEGF upregulate CXCR4 in glioblastoma: implications for angiogenesis and glioma cell invasion.
        Lab Invest. 2006; 86: 1221-1232
        • Selvakumaran M.
        • Yao K.S.
        • Feldman M.D.
        • O’Dwyer P.J.
        Antitumor effect of the angiogenesis inhibitor bevacizumab is dependent on susceptibility of tumors to hypoxia-induced apoptosis.
        Biochem Pharmacol. 2008; 75: 627-638
        • Dang D.T.
        • Chun S.Y.
        • Burkitt K.
        • et al.
        Hypoxia-inducible factor-1 target genes as indicators of tumor vessel response to vascular endothelial growth factor inhibition.
        Cancer Res. 2008; 68: 1872-1880
        • Chow L.Q.
        • Eckhardt S.G.
        Sunitinib: from rational design to clinical efficacy.
        J Clin Oncol. 2007; 25: 884-896
        • Gridelli C.
        • Maione P.
        • Del Gaizo F.
        • et al.
        Sorafenib and sunitinib in the treatment of advanced non-small cell lung cancer.
        Oncologist. 2007; 12: 191-200
        • Kiselyov A.
        • Balakin K.V.
        • Tkachenko S.E.
        VEGF/VEGFR signaling as a target for inhibiting angiogenesis.
        Expert Opin Investig Drugs. 2007; 16: 83-107
      2. Avizienye E, Ward RA, Garner AP. Comparison of the EGFR resistance mutation profiles generated by EFGR targeted tyrosine kinase inhibitors and the impact of drug combinations. Biochem J 2008 [published electronically June 30].

        • Ebos J.M.
        • Lee C.R.
        • Christensen J.G.
        • Mutsaers A.J.
        • Kerbel R.S.
        Multiple circulating proangiogenic factors induced by sunitinib malate are tumor-independent and correlate with antitumor efficacy.
        Proc Am Acad Sci USA. 2007; 104: 17069-17074
        • Valabrega G.
        • Montemurro F.
        • Aglietta M.
        Trastuzumab: mechanism of action, resistance and future perspectives in HER2-overexpressing breast cancer.
        Ann Oncol. 2007; 18: 977-984
        • Champ E.R.
        • Summy J.
        • Bauer T.W.
        • et al.
        Molecular mechanisms of resistance to therapies targeting the epidermal growth factor.
        Clin Cancer Res. 2005; 11: 397-405
        • Corso S.
        • Comoglio P.M.
        • Giordano S.
        Cancer therapy: can the challenge be MET?.
        Trends Mol Med. 2005; 11: 284-292
        • Birchmeier C.
        • Birchmeier W.
        • Gherardi E.
        • Vande Woude G.F.
        Met, metastasis, motility and more.
        Nat Rev Mol Cell Biol. 2003; 4: 915-925
        • Wheeler D.L.
        • Huang S.
        • Kruser T.J.
        • et al.
        Mechanisms of acquired resistance to cetuximab: role of HER (ErbB) family members.
        Oncogene. 2008; 27: 3944-3956
        • Lynch T.J.
        • Blumenschein Jr., G.R.
        • Engelman J.A.
        • et al.
        Summary statement novel agents in the treatment of lung cancer: fifth Cambridge conference assessing opportunities for combination therapy.
        J Thorac Oncol. 2008; 3: S107-S112
        • Guix M.
        • Faber R.C.
        • Wang S.E.
        • et al.
        Acquired resistance to EGFR-tyrosine kinase inhibitors in cancer cells is mediated by loss of IGF-binding proteins.
        J Clin Invest. 2008; 118: 2609-2619
        • Takeda K.
        • Sasaki A.T.
        • Ha H.
        • Seung H.A.
        • Firtel R.A.
        Role of phosphatidylinositol 3-kinases in chemotaxis in Dictyostelium.
        J Biol Chem. 2007; 282: 11874-11884
        • Goldman C.K.
        • Kim J.
        • Wong W.L.
        • King V.
        • Brock T.
        • Gillespie G.Y.
        Epidermal growth factor stimulates vascular endothelial growth factor production by human malignant glioma cells: a model of glioblastoma multiforme pathophysiology.
        Mol Biol Cell. 1993; 4: 121-133
        • Viloria-Petit A.
        • Crombet T.
        • Jothy S.
        • et al.
        Acquired resistance to the antitumor effect of epidermal growth factor receptor-blocking antibodies in vivo: a role for altered tumor angiogenesis.
        Cancer Res. 2001; 61: 5090-5101
        • Jung Y.D.
        • Mansfield P.F.
        • Akagi M.
        • et al.
        Effects of combination anti-vascular endothelial growth factor receptor and anti-epidermal growth factor receptor therapies on the growth of gastric cancer in a nude mouse model.
        Eur J Cancer. 2002; 38: 1133-1140
      3. Punt CJ, Tol J, Rodenburg CJ, et al. Randomized phase III study of capecitabine, oxaliplatin, and bevacizumab with or without cetuximab in advanced colorectal cancer (ACC), the CAIRO2 study of the Dutch Colorectal Cancer Group (DCCG). ASCO 2008; #LBA4011.

        • Marmor M.D.
        • Skaria K.B.
        • Yarden Y.
        Signal transduction and oncogenesis by ErbB/HER receptors.
        Int J Radiat Oncol Biol Phys. 2004; 58: 903-913
        • Vivanco I.
        • Sawyers G.L.
        The phosphatidylinositol 3-kinase AKT pathway in human cancer.
        Nat Rev Cancer. 2002; 2: 489-501
        • Frattini M.
        • Saletti P.
        • Romagnani E.
        • et al.
        PTEN loss of expression predicts cetuximab efficacy in metastatic colorectal cancer patients.
        Br J Cancer. 2007; 97: 1139-1145
        • Jhawer M.
        • Goel S.
        • Wilson A.J.
        • et al.
        PIK3CA mutation/PTEN expression status predicts response of colon cancer cells to the epidermal growth factor receptor inhibitor cetuximab.
        Cancer Res. 2008; 68: 1953-1961
        • Ihle N.T.
        • Paine-Murrieta G.
        • Berggren M.I.
        • et al.
        The phosphatidylinositol-3-kinase inhibitor PX-866 overcomes resistance to the epidermal growth factor receptor inhibitor gefitinib in A-549 human non-small cell lung cancer xenografts.
        Mol Cancer Ther. 2005; 4: 1349-1357
        • Malumbres M.
        • Barbacid M.
        RAS oncogenes: the first 30 years.
        Nat Rev Cancer. 2003; 3: 459-465
        • Downward J.
        Role of receptor tyrosine kinases in G-protein-coupled receptor regulation of Ras: transactivation or parallel pathways?.
        Biochem J. 2003; 376: e9-e10
        • Sequist L.V.
        • Martins R.G.
        • Spigel D.
        • et al.
        First-line gefitinib in patients with advanced non-small-cell lung cancer harboring somatic EGFR mutations.
        J Clin Oncol. 2008; 26: 2442-2449
        • Jänne P.A.
        Challenges of detecting EGFR T790M in gefitinib/erlotinib-resistant tumours.
        Lung Cancer. 2008; 60: S3-S9
        • Balak M.N.
        • Gong Y.
        • Riely G.J.
        • et al.
        Novel D761Y and common secondary T790M mutations in epidermal growth factor receptor-mutant lung adenocarcinomas with acquired resistance to kinase inhibitors.
        Clin Cancer Res. 2006; 12: 6494-6501
        • Fukui T.
        • Mitsudomi T.
        Mutations in the epidermal growth factor receptor gene and effects of EGFR-tyrosine kinase inhibitors on lung cancers.
        Gen Thorac Cardiovasc Surg. 2008; 56: 97-103
        • Kobayashi S.
        • Boggon T.J.
        • Dayaram T.
        • et al.
        EGFR mutation and resistance of non-small-cell lung cancer to gefitinib.
        N Engl J Med. 2005; 352: 786-792
        • Kosaka T.
        • Yatabe Y.
        • Endoh H.
        • et al.
        Analysis of epidermal growth factor receptor gene mutation in patients with non-small cell lung cancer and acquired resistance to gefitinib.
        Clin Cancer Res. 2006; 12: 5764-5769
        • Bean J.
        • Brennan C.
        • Shih J.Y.
        • et al.
        MET amplification occurs with or without T790M mutations in EGFR-mutant lung tumors with acquired resistance to gefitinib or erlotinib.
        Proc Natl Acad Sci USA. 2007; 104: 20932-20937
        • Yun C.H.
        • Mengwasser K.E.
        • Toms A.V.
        • et al.
        The T790M mutation in EGFR kinase causes drug resistance by increasing the affinity for ATP.
        Proc Natl Acad Sci USA. 2008; 105: 2070-2075
        • Carter T.A.
        • Wodicka L.M.
        • Shah N.P.
        • et al.
        Inhibition of drug-resistant mutants of ABL, KIT, and EGF receptor kinases.
        Proc Natl Acad Sci USA. 2005; 102: 11011-11016
        • Riely G.J.
        Second-generation epidermal growth factor receptor tyrosine kinase inhibitors in non-small cell lung cancer.
        J Thorac Oncol. 2008; 3: S146-S149
        • Li D.
        • Ambrogio L.
        • Shimamura T.
        • et al.
        BIBW2992, an irreversible EGFR/HER2 inhibitor highly effective in preclinical lung cancer models.
        Oncogene. 2008; 27: 4702-4711
        • Folprecht G.
        • Tabanero J.
        • Koehne C.H.
        • et al.
        Phase I pharmacokinetic/pharmacodynamic study of EKB-569, an irreversible inhibitor of the epidermal growth factor receptor tyrosine kinase, in combination with irinotecan, 5-fluorouracil, and leucovorin (FOLFIRI) in first-line treatment of patients with metastatic colorectal cancer.
        Clin Cancer Res. 2008; 14: 215-223
        • Yu Z.
        • Boggon T.J.
        • Kobayashi S.
        • et al.
        Resistance to an irreversible epidermal growth factor receptor (EGFR) inhibitor in EGFR-mutant lung cancer reveals novel treatment strategies.
        Cancer Res. 2007; 67: 10417-10427
        • Trowe T.
        • Boukouvala S.
        • Calkins K.
        • et al.
        EXEL-7647 inhibits mutant forms of ErbB2 associated with lapatinib resistance and neoplastic transformation.
        Clin Cancer Res. 2008; 14: 2465-2475
      4. Martin AP, Miller A, Emdad L, et al. Lapatinib resistance in HCT116 cells is mediated by elevated MCL-1 expression, decreased BAK activation, and not by ERBB receptor mutation. Mol Pharmacol 2008 [Jun 10 Epub ahead of print].

        • Van Cutsem E.
        • Lang I.
        • D’haens G.
        • et al.
        KRAS status and efficacy in the first-line treatment of patients with metastatic colorectal cancer (mCRC) treated with FOLFIRI with or without cetuximab: the CRYSTAL experience.
        J Clin Oncol. 2008; 26 (abstract 2)
        • Bokemeyer C.
        • Bondarenko I.
        • Hartmann J.T.
        • et al.
        KRAS status and efficacy of first-line treatment of patients with metastatic colorectal cancer (mCRC) with FOLFOX with or without cetuximab: the OPUS experience.
        J Clin Oncol. 2008; 26 (abstract 4000)
      5. Hecht JR, Mitchell EP, Baranda J, et al. Panitumumab (pmab) efficacy in patients (pts) with metastatic colorectal cancer (mCRC) with low or undetectable levels of epidermal growth factor receptor (EGFr): final efficacy and KRAS analyses. In: Proceedings of the gastrointestinal cancers symposium 2008 [abstract 343].

        • Di Fiore F.
        • Blanchard F.
        • Charbonnier F.
        • et al.
        Clinical relevance of KRAS mutation detection in metastatic colorectal cancer treated by cetuximab plus chemotherapy.
        Br J Cancer. 2007; 96: 166-169
        • Khambata-Ford S.
        • Garrett C.R.
        • Meropol N.J.
        • et al.
        Expression of epiregulin and amphiregulin and K-ras mutation status predicts disease control in metastatic colorectal cancer patients.
        J Clin Oncol. 2007; 25: 3230-3237
        • Amado R.G.
        • Wolf M.
        • Peeters M.
        • et al.
        Wild-type KRAS is required for panitumumab efficacy in patients with metastatic colorectal cancer.
        J Clin Oncol. 2008; 26: 1626-1634
        • Lievre A.
        • Bachet J.B.
        • Boige V.
        • et al.
        KRAS mutations as an independent prognostic factor in patients with advanced colorectal cancer treated with cetuximab.
        J Clin Oncol. 2008; 26: 374-379
        • De Rook W.
        • Piessevaux H.
        • De Schutter J.
        • et al.
        KRAS wild-type state predicts survival and is associated to early radiological response in metastatic colorectal cancer treated with cetuximab.
        Ann Oncol. 2008; 19: 508-515
        • Cappuzzo F.
        • Varella-Garcia M.
        • Finocchiaro G.
        • et al.
        Primary resistance to cetuximab therapy in EGFR FISH-positive colorectal cancer patients.
        Br J Cancer. 2008; 99: 83-89
        • Lenz H.J.
        • Van Cutsem E.
        • Khambata-Ford S.
        • et al.
        Multicenter phase II and translational study of cetuximab in metastatic colorectal carcinoma refractory to irinotecan, oxaliplatin, and fluoropyrimidines.
        J Clin Oncol. 2006; 24: 4914-4921
        • Tejpar S.
        • Peeters M.
        • Humblet Y.
        • et al.
        Relationship of efficacy with KRAS status (wild-type versus mutant) in patients with irinotecan-refractory metastatic colorectal cancer (mCRC), treated with irinotecan (q2w) and escalating doses of cetuximab (q1w): the EVEREST experience (preliminary data).
        J Clin Oncol. 2008; 26 (abstract 400)
        • Maity A.
        • Pore N.
        • Lee J.
        • et al.
        Epidermal growth factor receptor transcriptionally upregulates vascular endothelial growth factor expression in human glioblastoma cells via a pathway involving phosphoinositol 3’-kinase and distinct from that induced by hypoxia.
        Cancer Res. 2000; 60: 5879-5886
        • Ravindranath N.
        • Wion D.
        • Brachet P.
        • et al.
        Epidermal growth factor modulates the expression of vascular endothelial growth factor in the human prostate.
        J Androl. 2001; 22: 432-443
        • Hurwitz H.
        • Fehrenbacher L.
        • Novotny W.
        • et al.
        Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer.
        N Engl J Med. 2004; 350: 2335-2342
        • Ince W.L.
        • Jubb A.M.
        • Holden S.N.
        • et al.
        Association of k-ras, b-raf, and p53 status with the treatment effect of bevacizumab.
        J Natl Cancer Inst. 2005; 97: 981-989
        • Inoue A.
        • Suzuki T.
        • Fukuhara T.
        • et al.
        Prospective phase II study of gefitinib for chemotherapy-naive patients with advanced non-small cell lung cancer with epidermal growth factor receptor gene mutations.
        J Clin Oncol. 2006; 24: 3340-3346
        • Asahina H.
        • Yamazaki K.
        • Kinoshita I.
        • et al.
        A phase II trial of gefitinib as first-line therapy for advanced non-small cell lung cancer with epidermal growth factor receptor mutations.
        Br J Cancer. 2006; 95: 998-1004
        • Paz-Ares L.
        • Sanchez J.M.
        • Garcia-Velasco A.
        • et al.
        A prospective phase II trial of erlotinib in advanced non-small cell lung cancer (NSCLC) patients with mutations in the tyrosine kinase domain of the epidermal growth factor receptor.
        J Clin Oncol. 2006; 24 (abstract 7020)
        • Jackman D.M.
        • Cioffredi L.
        • Sequist L.V.
        • et al.
        Impact of EGFR and KRAS genotype on outcomes in a clinical trial registry of NSCLC patients initially treated with erlotinib or gefitinib.
        J Clin Oncol. 2008; 26 (abstract 8035)