Advertisement
Research Article| Volume 45, ISSUE 3, P405-413, February 2009

Loss of Plexin B1 is highly prognostic in low proliferating ER positive breast cancers – Results of a large scale microarray analysis

Published:December 03, 2008DOI:https://doi.org/10.1016/j.ejca.2008.10.016

      Abstract

      Plexins, cell-surface receptors for semaphorins, are involved in cell adhesion and migration. In the previous work, we demonstrated that the loss of Plexin B1 expression is associated with poor outcome in breast cancer patients. The goal of the present study was a validation of Plexin B1 expression in a large scale microarray dataset from n = 1086 breast cancer patients. Plexin B1 correlates with ER status (p < 0.001) and is of prognostic significance only in ER positive (p = 0.024) but not in ER negative samples (p = 0.85). Among ER positive tumours, the loss of Plexin B1 expression is associated with a positive ErbB2 status (p = 0.05) and a high Ki67 expression (p = 0.016) in univariate analysis. Multivariate Cox regression including all standard parameters among ER positive tumours revealed that Plexin B1 (HR 1.59, 95% confidence interval (CI) 1.03–2.47, p = 0.036) remains a significant prognostic marker besides tumour size (HR 2.27, 95% CI 1.33–3.89, p = 0.0028) and Ki67 (HR 1.78, 95% CI 1.12–2.84, p = 0.0149). Interestingly, the prognostic value of Plexin B1 was pronounced in low proliferating ER positive tumours otherwise characterised by a low risk of recurrence. In conclusion, this study confirms our previous observations suggesting Plexin B1 as a new prognostic marker in ER positive breast cancers.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to European Journal of Cancer
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Kruger R.P.
        • Aurandt J.
        • Guan K.L.
        Semaphorins command cells to move.
        Nat Rev Mol Cell Biol. 2005; 6: 789-800
        • Bussolino F.
        • Valdembri D.
        • Caccavari F.
        • Serini G.
        Semaphoring vascular morphogenesis.
        Endothelium. 2006; 13: 81-91
        • Giordano S.
        • Corso S.
        • Conrotto P.
        • et al.
        The semaphorin 4D receptor controls invasive growth by coupling with Met.
        Nat Cell Biol. 2002; 4: 720-724
        • Behar O.
        • Golden J.A.
        • Mashimo H.
        • Schoen F.J.
        • Fishman M.C.
        Semaphorin III is needed for normal patterning and growth of nerves, bones and heart.
        Nature. 1996; 383: 525-528
        • Gitler A.D.
        • Lu M.M.
        • Epstein J.A.
        PlexinD1 and semaphorin signaling are required in endothelial cells for cardiovascular development.
        Dev Cell. 2004; 7: 107-116
        • Torres-Vazquez J.
        • Gitler A.D.
        • Fraser S.D.
        • et al.
        Semaphorin-Plexin signaling guides patterning of the developing vasculature.
        Dev Cell. 2004; 7: 117-123
        • Kagoshima M.
        • Ito T.
        Diverse gene expression and function of semaphorins in developing lung: positive and negative regulatory roles of semaphorins in lung branching morphogenesis.
        Genes Cells. 2001; 6: 559-571
        • Morris J.S.
        • Stein T.
        • Pringle M.A.
        • et al.
        Involvement of axonal guidance proteins and their signaling partners in the developing mouse mammary gland.
        J Cell Physiol. 2006; 206: 16-24
        • Takegahara N.
        • Takamatsu H.
        • Toyofuku T.
        • et al.
        Plexin-A1 and its interaction with DAP12 in immune responses and bone homeostasis.
        Nat Cell Biol. 2006; 8: 615-622
        • Tse C.
        • Xiang R.H.
        • Bracht T.
        • Naylor S.L.
        Human semaphorin 3B (SEMA3B) located at chromosome 3p21.3 suppresses tumor formation in an adenocarcinoma cell line.
        Cancer Res. 2002; 62: 542-546
        • Xiang R.
        • Davalos A.R.
        • Hensel C.H.
        • et al.
        Semaphorin 3F gene from human 3p21.3 suppresses tumor formation in nude mice.
        Cancer Res. 2002; 62: 2637-2643
        • Brambilla E.
        • Constantin B.
        • Drabkin H.
        • Roche J.
        Semaphorin SEMA3F localization in malignant human lung and cell lines: a suggested role in cell adhesion and cell migration.
        Am J Pathol. 2000; 156: 939-950
        • Swiercz J.M.
        • Kuner R.
        • Offermanns S.
        Plexin-B1/RhoGEF-mediated RhoA activation involves the receptor tyrosine kinase ErbB-2.
        J Cell Biol. 2004; 165: 869-880
        • Rody A.
        • Holtrich U.
        • Gaetje R.
        • et al.
        Poor outcome in estrogen receptor-positive breast cancers predicted by loss of Plexin B1.
        Clin Cancer Res. 2007; 13: 1115-1122
        • Rody A.
        • Karn T.
        • Holtrich U.
        • Kaufmann M.
        “Stem cell like” breast cancers – a model for the identification of new prognostic/predictive markers in endocrine responsive breast cancer exemplified by Plexin B1.
        Eur J Obst Gynecol Reprod Biol. 2008; 139: 11-15
      1. Ruckhäberle E, Rody A, Engels K, et al. Microarray analysis of altered sphingolipid metabolism reveals prognostic significance of sphingosine kinase 1 in breast cancer. Breast Cancer Res Treat 2007;December 4.

      2. Rody A, Holtrich U, Muller V, et al. c-Kit: identification of co-regulated genes by gene expression profiling and clinical relevance of two breast cancer subtypes with stem cell like features. 2006 ASCO Annual Meeting Proceedings Part I. J Clin Oncol 2006;24:622.

        • Ahr A.
        • Karn T.
        • Solbach C.
        • et al.
        Identification of high risk breast-cancer patients by gene expression profiling.
        Lancet. 2002; 359: 131-132
        • Pawitan Y.
        • Bjohle J.
        • Amler L.
        • et al.
        Gene expression profiling spares early breast cancer patients from adjuvant therapy: derived and validated in two population-based cohorts.
        Breast Cancer Res. 2005; 7: R953-R964
        • Sotiriou C.
        • Wirapati P.
        • Loi S.
        • et al.
        Gene expression profiling in breast cancer: understanding the molecular basis of histologic grade to improve prognosis.
        J Natl Cancer Inst. 2006; 98: 262-272
        • Loi S.
        • Haibe-Kains B.
        • Desmedt C.
        • et al.
        Definition of clinically distinct molecular subtypes in estrogen receptor-positive breast carcinomas through genomic grade.
        J Clin Oncol. 2007; 25: 1239-1246
        • Minn A.J.
        • Gupta G.P.
        • Siegel P.M.
        • et al.
        Genes that mediate breast cancer metastasis to lung.
        Nature. 2005; 436: 518-524
        • Desmedt C.
        • Piette F.
        • Loi S.
        • et al.
        TRANSBIG Consortium. Strong time dependence of the 76-gene prognostic signature for node-negative breast cancer patients in the TRANSBIG multicenter independent validation series.
        Clin Cancer Res. 2007; 13: 3207-3214
      3. The International Genomics Consortium (IGC). The expO project (Expression Project For Oncology). <http://www.intgen.org/>.

        • Li C.
        • Wong W.H.
        Model-based analysis of oligonucleotide arrays: expression index computation and outlier detection.
        Proc Natl Acad Sci USA. 2001; 98: 31-36
        • Irizarry R.A.
        • Bolstad B.M.
        • Collin F.
        • et al.
        Summaries of Affymetrix GeneChip probe level data.
        Nucl Acids Res. 2003; 31: e15
        • Foekens J.A.
        • Atkins D.
        • Zhang Y.
        • et al.
        Multicenter validation of a gene expression-based prognostic signature in lymph node-negative primary breast cancer.
        J Clin Oncol. 2006; 24: 1665-1671
        • Gong Y.
        • Yan K.
        • Lin F.
        • et al.
        Determination of oestrogen-receptor status and ERBB2 status of breast carcinoma: a gene-expression profiling study.
        Lancet Oncol. 2007; 8: 203-211
        • Bonnefoi H.
        • Potti A.
        • Delorenzi M.
        • et al.
        Validation of gene signatures that predict the response of breast cancer to neoadjuvant chemotherapy: a substudy of the EORTC 10994/BIG 00-01 clinical trial.
        Lancet Oncol. 2007; 8: 1071-1078
        • Alexe G.
        • Dalgin G.S.
        • Scanfeld D.
        • et al.
        High expression of lymphocyte-associated genes in node-negative HER2+ breast cancers correlates with lower recurrence rates.
        Cancer Res. 2007; 67: 10669-10676
      4. Venables WN, Ripley BD. Modern applied statistics with S (4th ed.). Springer; 2002. ISBN 0-387-95457-0.

        • de Azambuja E.
        • Cardoso F.
        • de Castro Jr., G.
        • et al.
        Ki-67 as prognostic marker in early breast cancer: a meta-analysis of published studies involving 12,155 patients.
        Brit J Cancer. 2007; 96: 1504-1513
        • Spyratos F.
        • Ferrero-Poüs M.
        • Trassard M.
        • et al.
        Correlation between MIB-1 and other proliferation markers: clinical implications of the MIB-1 cutoff value.
        Cancer. 2002; 94: 2151-2159
        • Ivshina A.V.
        • George J.
        • Senko O.
        • et al.
        Genetic reclassification of histologic grade delineates new clinical subtypes of breast cancer.
        Cancer Res. 2006; 66: 10292-102301
        • Wang Y.
        • Klijn J.G.
        • Zhang Y.
        • et al.
        Gene-expression profiles to predict distant metastasis of lymph-node-negative primary breast cancer.
        Lancet. 2005; 365: 671-679
        • Sørlie T.
        • Perou C.M.
        • Tibshirani R.
        • et al.
        Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications.
        Proc Natl Acad Sci USA. 2001; 98: 10869-10874
        • Calza S.
        • Hall P.
        • Auer G.
        • et al.
        Intrinsic molecular signature of breast cancer in a population-based cohort of 412 patients.
        Breast Cancer Res. 2006; 8: R34
        • Wirapati P.
        • Sotiriou C.
        • Kunkel S.
        • et al.
        Meta-analysis of gene-expression profiles in breast cancer: toward a unified understanding of breast cancer sub-typing and prognosis signatures.
        Breast Cancer Res. 2008; 10: R65
        • Ignatiadis M.
        • Sotiriou C.
        Understanding the molecular basis of histologic grade.
        Pathobiology. 2008; 75: 104-111
        • Anderson W.F.
        • Chen B.E.
        • Jatoi I.
        • Rosenberg P.S.
        Effects of estrogen receptor expression and histopathology on annual hazard rates of death from breast cancer.
        Breast Cancer Res Treat. 2006; 100: 121-126
        • Jatoi I.
        • Chen B.E.
        • Anderson W.F.
        • Rosenberg P.S.
        Breast cancer mortality trends in the United States according to estrogen receptor status and age at diagnosis.
        J Clin Oncol. 2007; 25: 1683-1690