Advertisement

Neuropathic pain in cancer

      Abstract

      Neuropathic pain in cancer arises following injury to peripheral or central neurons, in a similar manner to such pain arising from a non-cancer injury. Much of our knowledge of neuropathic pain is based on peripheral originating events with little known about central neuropathic pain. This article explores some of the similarities and differences between cancer and non-cancer-related neuropathic pain. The neural pathways, ion channels, receptors and neurotransmitters that potentially can be altered in both neuropathies are the same; however the nature of the injury, the timing, repeated injuries and the co-existence of simultaneous non-neuropathic pain states lead to potential unique constellations of neuroreceptor and neurotransmitter expression in the context of cancer pain. This in turn may lead to different clinical presentation of pain sensations and potentially lead to specific treatment options.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to European Journal of Cancer
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Besson J.M.
        The neurobiology of pain.
        Lancet. 1999; 353: 1610-1615
        • Bostrom B.
        • Sandh M.
        • Lundberg D.
        • Fridlund B.
        A comparison of pain and health-related quality of life between two groups of cancer patients with differing average levels of pain.
        J Clin Nurs. 2003; 12: 726-735
        • Williams L.S.
        • Jones W.J.
        • Shen J.
        • Robinson R.L.
        • Weinberger M.
        • Kroenke K.
        Prevalence and impact of depression and pain in neurology outpatients.
        J Neurol Neurosurg Psychiatry. 2003; 74: 1589-1599
        • Bennett M.I.
        • Smith B.H.
        • Torrance N.
        • Lee A.J.
        Can pain be more or less neuropathic? Comparison of symptom assessment tools with ratings of certainty by clinicains.
        Pain. 2006; 122: 289-294
        • Shimoyama M.
        • Tatsuoka H.
        • Ohtori S.
        • Tanaka K.
        • Shimoyama N.
        Change of dorsal horn neurochemistry in a mouse model of neuropathic cancer pain.
        Pain. 2005; 114: 221-230
        • Flatters S.J.
        • Bennett G.J.
        Studies of peripheral sensory nerves in paclitaxel-induced painful peripheral neuropathy: evidence for mitochondrial dysfunction.
        Pain. 2006; 122: 245-257
        • Donovan-Rodriguez T.
        • Dickenson A.H.
        • Urch C.E.
        Gabapentin normalizes spinal neuronal responses that correlate with behavior in a rat model of cancer-induced bone pain.
        Anesthesiology. 2005; 102: 132-140
        • Grond S.
        • Radbruch L.
        • Meuser T.
        • Sabatowski R.
        • Loick G.
        • Lehmann K.A.
        Assessment and treatment of neuropathic cancer pain gollowing WHO guidelines.
        Pain. 1999; 79: 15-20
        • Jensen T.S.
        • Gottrup H.
        • Sindrup S.H.
        • Bach F.W.
        The clinical picture of neuropathic pain.
        Eur J Pharmacol. 2001; 429: 1-11
        • Rasmussen P.V.
        • Sindrup S.H.
        • Jensen T.S.
        • Bach F.W.
        Symptoms and signs in patients with suspected neuropathic pain.
        Pain. 2004; 110: 461-469
        • Foley K.M.
        Advances in cancer pain.
        Arch Neurol. 1999; 56: 413-417
        • Brodin E.
        • Linderoth B.
        • Gazelius B.
        • Ungerstedt U.
        In vivo release of substance P in cat dorsal horn studied with microdialysis.
        Neurosci Lett. 1987; 76: 357-362
        • Dickenson A.H.
        • Chapman V.
        • Green G.M.
        The pharmacology of excitatory and inhibitory amino acid-mediated events in the transmission and modulation of pain in the spinal cord.
        Gen Pharmacol. 1997; 28: 633-638
        • Mercadante S.
        • Portenoy R.K.
        Opioid poorly-responsive cancer pain. Part 2: basic mechanisms that could shift dose response for analgesia.
        J Pain Symptom Manage. 2001; 21: 255-264
        • Dickenson A.H.
        • Suzuki R.
        Opioids in neuropathic pain: clues from animal studies.
        Eur J Pain. 2005; 9: 113-116
        • Wang L.X.
        • Wang Z.J.
        Animal and cellular models of chronic pain.
        Adv Drug Deliv Rev. 2003; 55: 949-965
        • Tesch G.H.
        • Allen T.J.
        Rodent models of streptozotocin-induced diabetic nephropathy.
        Nephrology (Carlton). 2007; 12: 261-266
        • Suzuki R.
        • Dickenson A.H.
        Neuropathic pain: nerves bursting with excitement.
        Neuroreport. 2000; 11: R17-R21
        • Suzuki R.
        • Rahman W.
        • Hunt S.P.
        • Dickenson A.H.
        Descending facilitatory control of mechanically evoked responses is enhanced in deep dorsal horn neurones following peripheral nerve injury.
        Brain Res. 2004; 1019: 68-76
        • Hota D.
        • Bansal V.
        • Pattanaik S.
        Evaluation of ketamine, nimodipine, gabapentin and imipramine in partial sciatic nerve transection model of neuropathic pain in rat: an experimental study.
        Methods Find Exp Clin Pharmacol. 2007; 29: 443-446
        • Christoph T.
        • Schiene K.
        • Englberger W.
        • Parsons C.G.
        • Chizh B.A.
        The antiallodynic effect of NMDA antagonists in neuropathic pain outlasts the duration of the in vivo NMDA antagonism.
        Neuropharmacology. 2006; 51: 12-17
        • Hudson A.J.
        Pain perception and response: central nervous system mechanisms.
        Can J Neurol Sci. 2000; 27: 2-16
        • Gebhart G.F.
        Descending modulation of pain.
        Neurosci Biobehav Rev. 2004; 27: 729-737
        • Holden J.E.
        • Jeong Y.
        • Forrest J.M.
        The endogenous opioid system and clinical pain management.
        AACN Clin Issues. 2005; 16: 291-301
        • Morgan V.
        • Pickens D.
        • Gautam S.
        • Kessler R.
        • Mertz H.
        Amitriptyline reduces rectal pain related activation of the anterior cingulate cortex in patients with irritable bowel syndrome.
        Gut. 2005; 54: 601-607
        • Forman A.D.
        Peripheral neuropathy and cancer.
        Curr Oncol Rep. 2004; 6: 20-25
        • Cleeland C.S.
        • Bennett G.J.
        • Dantzer R.
        • Dougherty P.M.
        • Dunn A.J.
        • Meyers C.A.
        • et al.
        Are the symptoms of cancer and cancer treatment due to a shared biologic mechanism? A cytokine-immunologic model of cancer symptoms.
        Cancer. 2003; 97: 2919-2925
      1. Henry DH, Viswanathan HN, Elkin EP, Traina S, Wade S, Cella D. Symptoms and treatment burden associated with cancer treatment: results from a cross-sectional national survey in the U.S. Support Care Cancer 2008. Jan 17 [Epub ahead of print]

        • Lipton R.B.
        • Apfel S.C.
        • Dutcher J.P.
        • Rosenberg R.
        • Kaplan J.
        • Berger A.
        • et al.
        Taxol produces a predominantly sensory neuropathy.
        Neurology. 1989; 39: 368-373
        • Cata J.P.
        • Weng H.R.
        • Lee B.N.
        • Reuben J.M.
        • Dougherty P.M.
        Clinical and experimental findings in humans and animals with chemotherapy-induced peripheral neuropathy.
        Minerva Anestesiol. 2006; 72: 151-169
        • Sahenk Z.
        • Barohn R.
        • New P.
        • Mendell J.R.
        Taxol neuropathy. Electrodiagnostic and sural nerve biopsy findings.
        Arch Neurol. 1994; 51: 726-729
        • Kudel I.
        • Edwards R.R.
        • Kozachik S.
        • Block B.M.
        • Agarwal S.
        • Heinberg L.J.
        • et al.
        Predictors and consequences of multiple persistent postmastectomy pains.
        J Pain Symptom Manage. 2007; 34: 619-627
        • Asai H.
        • Ozaki N.
        • Shinoda M.
        • Nagamine K.
        • Tohnai I.
        • Ueda M.
        • et al.
        Heat and mechanical hyperalgesia in mice model of cancer pain.
        Pain. 2005; 117: 19-29
        • Lee B.H.
        • Seong J.
        • Kim U.J.
        • Won R.
        • Kim J.
        Behavioral characteristics of a mouse model of cancer pain.
        Yonsei Med J. 2005; 46: 252-259
        • Shimoyama M.
        • Tanaka K.
        • Hasue F.
        • Shimoyama N.
        A mouse model of neuropathic cancer pain.
        Pain. 2002; 99: 167-174
        • Eliav E.
        • Tal M.
        • Benoliel R.
        Experimental malignancy in the rat induces early hypersensitivity indicative of neuritis.
        Pain. 2004; 110: 727-737
        • Rowinsky E.K.
        The development and clinical utility of the taxane class of antimicrotubule chemotherapy agents.
        Annu Rev Med. 1997; 48: 353-374
        • Cavaletti G.
        • Bogliun G.
        • Marzorati L.
        • Zincone A.
        • Marzola M.
        • Colombo N.
        • et al.
        Peripheral neurotoxicity of taxol in patients previously treated with cisplatin.
        Cancer. 1995; 75: 1141-1150
        • Cavaletti G.
        • Bogliun G.
        • Marzorati L.
        • Zincone A.
        • Piatti M.
        • Colombo N.
        • et al.
        Early predictors of peripheral neurotoxicity in cisplatin and paclitaxel combination chemotherapy.
        Ann Oncol. 2004; 15: 1439-1442
        • Cavaletti G.
        • Cavalletti E.
        • Montaguti P.
        • Oggioni N.
        • De Negri O.
        • Tredici G.
        Effect on the peripheral nervous system of the short-term intravenous administration of paclitaxel in the rat.
        Neurotoxicology. 1997; 18: 137-145
        • Cavaletti G.
        • Cavalletti E.
        • Oggioni N.
        • Sottani C.
        • Minoia C.
        • D’Incalci M.
        • et al.
        Distribution of paclitaxel within the nervous system of the rat after repeated intravenous administration.
        Neurotoxicology. 2000; 21: 389-393
        • Jordan M.A.
        • Kamath K.
        How do microtubule-targeted drugs work? An overview.
        Curr Cancer Drug Targets. 2007; 7: 730-742
        • Cliffer K.D.
        • Siuciak J.A.
        • Carson S.R.
        • Radley H.E.
        • Park J.S.
        • Lewis D.R.
        • et al.
        Physiological characterization of Taxol-induced large-fiber sensory neuropathy in the rat.
        Ann Neurol. 1998; 43: 46-55
        • Polomano R.C.
        • Bennett G.J.
        Chemotherapy-evoked painful peripheral neuropathy.
        Pain Med. 2001; 2: 8-14
        • Tanner K.D.
        • Reichling D.B.
        • Levine J.D.
        Nociceptor hyper-responsiveness during vincristine-induced painful peripheral neuropathy in the rat.
        J Neurosci. 1998; 18: 6480-6491
        • Tanner K.D.
        • Reichling D.B.
        • Gear R.W.
        • Paul S.M.
        • Levine J.D.
        Altered temporal pattern of evoked afferent activity in a rat model of vincristine-induced painful peripheral neuropathy.
        Neuroscience. 2003; 118: 809-817
        • Weng H.R.
        • Cordella J.V.
        • Dougherty P.M.
        Changes in sensory processing in the spinal dorsal horn accompany vincristine-induced hyperalgesia and allodynia.
        Pain. 2003; 103: 131-138
        • Pusztai L.
        • Mendoza T.R.
        • Reuben J.M.
        • Martinez M.M.
        • Willey J.S.
        • Lara J.
        • et al.
        Changes in plasma levels of inflammatory cytokines in response to paclitaxel chemotherapy.
        Cytokine. 2004; 25: 94-102
        • Nozaki-Taguchi N.
        • Chaplan S.R.
        • Higuera E.S.
        • Ajakwe R.C.
        • Yaksh T.L.
        Vincristine-induced allodynia in the rat.
        Pain. 2001; 93: 69-76
        • Luo Z.D.
        • Chaplan S.R.
        • Higuera E.S.
        • Sorkin L.S.
        • Stauderman K.A.
        • Williams M.E.
        • et al.
        Upregulation of dorsal root ganglion (alpha)2(delta) calcium channel subunit and its correlation with allodynia in spinal nerve-injured rats.
        J Neurosci. 2001; 21: 1868-1875
        • Luo Z.D.
        • Calcutt N.A.
        • Higuera E.S.
        • Valder C.R.
        • Song Y.H.
        • Svensson C.I.
        • et al.
        Injury type-specific calcium channel alpha 2 delta-1 subunit up-regulation in rat neuropathic pain models correlates with antiallodynic effects of gabapentin.
        J Pharmacol Exp Ther. 2002; 303: 1199-1205
        • Matsumoto M.
        • Inoue M.
        • Hald A.
        • Xie W.
        • Ueda H.
        Inhibition of paclitaxel-induced A-fiber hypersensitization by gabapentin.
        J Pharmacol Exp Ther. 2006; 318: 735-740
        • Marchand F.
        • Alloui A.
        • Pelissier T.
        • Hernandez A.
        • Authier N.
        • Alvarez P.
        • et al.
        Evidence for an antihyperalgesic effect of venlafaxine in vincristine-induced neuropathy in rat.
        Brain Res. 2003; 980: 117-120
        • Flatters S.J.
        • Bennett G.J.
        Ethosuximide reverses paclitaxel- and vincristine-induced painful peripheral neuropathy.
        Pain. 2004; 109: 150-161
        • Lynch 3rd, J.J.
        • Wade C.L.
        • Zhong C.M.
        • Mikusa J.P.
        • Honore P.
        Attenuation of mechanical allodynia by clinically utilized drugs in a rat chemotherapy-induced neuropathic pain model.
        Pain. 2004; 110: 56-63
        • Mantyh P.W.
        • Clohisy D.R.
        • Koltzenburg M.
        • Hunt S.P.
        Molecular mechanisms of cancer pain.
        Nat Rev Cancer. 2002; 2: 201-209
        • Honore P.
        • Schwei J.
        • Rogers S.D.
        • Salak-Johnson J.L.
        • Finke M.P.
        • Ramnaraine M.L.
        • et al.
        Cellular and neurochemical remodeling of the spinal cord in bone cancer pain.
        Prog Brain Res. 2000; 129: 389-397
        • Urch C.E.
        • Donovan-Rodriguez T.
        • Dickenson A.H.
        Alterations in dorsal horn neurones in a rat model of cancer-induced bone pain.
        Pain. 2003; 106: 347-356
        • Schwei M.J.
        • Honore P.
        • Rogers S.D.
        • Salak-Johnson J.L.
        • Finke M.P.
        • Ramnaraine M.L.
        • et al.
        Neurochemical and cellular reorganization of the spinal cord in a murine model of bone cancer pain.
        J Neurosci. 1999; 19: 10886-10897