Challenges in cancer pain management–bone pain

  • L. Colvin
    Department of Anaesthesia, Critical Care & Pain Medicine in Palliative Medicine, Edinburgh Cancer Research Centre, St Columba’s Hospice Chair of Palliative Medicine, Institute of Genetics & Molecular Medicine, Western General Hospital, Crewe Road South, Edinburgh, EH4 2XU, UK
    Search for articles by this author
  • Author Footnotes
    a Consultant / Senior Lecturer.
    M. Fallon
    Corresponding author: Tel./fax: +0044 131 537 3094.
    a Consultant / Senior Lecturer.
    Department of Anaesthesia, Critical Care & Pain Medicine in Palliative Medicine, Edinburgh Cancer Research Centre, St Columba’s Hospice Chair of Palliative Medicine, Institute of Genetics & Molecular Medicine, Western General Hospital, Crewe Road South, Edinburgh, EH4 2XU, UK
    Search for articles by this author
  • Author Footnotes
    a Consultant / Senior Lecturer.
Published:April 28, 2008DOI:


      Whilst not strictly a neuropathic injury, cancer-induced bone pain (CIBP) is a unique state with features of neuropathy and inflammation. Recent work has demonstrated that osteoclasts damage peripheral nerves (peptidergic C fibres and SNS) within trabeculated bone leading to deafferentation. In addition, glia cell activation and neuronal hyperexcitability within the dorsal horn, are all similar to a neuropathy. Gabapentin and carbamazepine (both anti-convulsants that modulate neuropathy) are effective at attenuating dorsal horn neuronal excitability and normalizing pain-like behaviours in a rat model of CIBP. However alterations in neuroreceptors in the dorsal horn do not mimic neuropathy, rather only dynorphin is upregulated, glia cells are active and hypertrophic and c-fos expression is increased post-noxious behavioural stimulus. CIBP perhaps illustrates best the complexity of cancer pains. Rarely are they purely neuropathic, inflammatory, ischaemic or visceral but rather a combination. Management is multimodal with radiotherapy, analgesics (opioids, NSAIDs), bisphosphonates, radioisotopes and tumouricidal therapies. The difficulty with opioids relates to efficacy on spontaneous pain at rest and movement-related pain. Potential adjuvants to standard analgesic therapies for CIBP are being explored in clinical trials and include inhibitors of glutamate release.


      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to European Journal of Cancer
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Honore P.
        • Rogers S.D.
        • Schwei M.J.
        • et al.
        Murine models of inflammatory, neuropathic and cancer pain each generates a unique set of neurochemical changes in the spinal cord and sensory neurons.
        Neuroscience. 2000; 98: 585-598
        • Sabino M.A.
        • Luger N.M.
        • Mach D.B.
        • et al.
        Different tumors in bone each give rise to a distinct pattern of skeletal destruction, bone cancer-related pain behaviors and neurochemical changes in the central nervous system.
        International Journal of Cancer. 2003; 104: 550-558
        • Mantyh P.W.
        • Clohisy D.R.
        • Koltzenburg M.
        • Hunt S.P.
        Molecular mechanisms of cancer pain.
        Nature Reviews Cancer. 2002; 2: 201-209
        • Tracey I.
        • Ploghaus A.
        • Gati J.S.
        • et al.
        Imaging attentional modulation of pain in the periaqueductal gray in humans.
        J Neuroscience. 2002; 22: 2748-2752
        • Swett J.E.
        • Woolf C.J.
        The somatotopic organization of primary afferent terminals in the superficial laminae of the dorsal horn of the rat spinal-cord.
        Journal of Comparative Neurology. 1985; 231: 66-77
        • Stamford J.A.
        Descending control of pain.
        BJA. 1995; 75: 217-227
        • Cervero F.
        • Iggo A.
        The substantia gelatinosa of the spinal cord: a critical review.
        Brain. 1980; 103: 717-772
        • Bouhassira D.
        • Chitour D.
        • Villaneuva L.
        • Le Bars D.
        The spinal transmission of nociceptive information: modulation by the caudal medulla.
        Neuroscience. 1995; 69: 931-938
        • Willis W.D.
        • Coggeshall R.E.
        Sensory Mechanisms of the Spinal Cord.
        2 ed. Plenum Press, New York, London1991
        • Price M.P.
        • McIlwrath S.L.
        • Xie J.
        • et al.
        The DRASIC cation channel contributes to the detection of cutaneous touch and acid stimuli in mice.
        Neuron. 2001; 32 ([erratum appears in Neuron 2002;35(2):407]): 1071-1083
        • Sluka K.A.
        • Radhakrishnan R.
        • Benson C.J.
        • et al.
        ASIC3 in muscle mediates mechanical, but not heat, hyperalgesia associated with muscle inflammation.
        Pain. 2007; 129: 102-112
        • Krishtal O.A.
        • Marchenko S.M.
        • Obukhov A.G.
        • et al.
        Cationic channels activated by extracellular ATP in rat sensory neurons.
        Neuroscience. 1988; 27: 995-1000
        • Kirschstein T.
        • Greffrath W.
        • Busselberg D.
        • et al.
        Inhibition of rapid heat responses in nociceptive primary sensory neurons of rats by vanilloid receptor antagonists.
        J Neurophys. 1999; 82: 2853-2860
        • Wang H.
        • Woolf C.J.
        Pain TRPs.
        Neuron. 2005; 46: 9-12
      1. Marceau F, Regoli D. Bradykinin receptor ligands: therapeutic perspectives. Nature Reviews 2004;Drug Discovery. 3:845-852.

        • Urch C.
        The pathophysiology of cancer-induced bone pain: current understanding.
        Palliative Medicine. 2004; 18: 267-274
        • Voilley N.
        Acid-sensing ion channels (ASICs): new targets for the analgesic effects of non-steroid anti-inflammatory drugs (NSAIDs).
        Current Drug Targets - Inflammation & Allergy. 2004; 3: 71-79
        • Kidd B.L.
        • Urban L.A.
        Mechanisms of inflammatory pain.
        BJA. 2001; 87: 3-11
        • Duggan A.W.
        • Hendry I.A.
        • Morton C.R.
        • et al.
        Cutaneous stimuli releasing immunoreactive substance P in the dorsal horn of the cat.
        Brain Res. 1988; 451: 261-273
        • Allen B.J.
        • Rogers S.D.
        • Ghilardi J.R.
        • et al.
        Noxious cutaneous thermal stimuli induce a graded release of endogenous substance P in the spinal cord: imaging peptide action in vivo.
        J Neuroscience. 1997; 17: 5921-5927
        • Berman H.H.
        • Kim K.H.S.
        • Talati A.
        • Hirsch J.
        Representation of nociceptive stimuli in primary sensory cortex.
        Neuroreport. 1998; 9: 4179-4187
        • Davis K.D.
        The neural circuitry of pain as explored with functional MRI.
        Neurological Research. 2000; 22: 313-317
        • Peyron R.
        • Laurent B.
        • Garcia-Larrea L.
        Functional imaging of brain responses to pain. A review and meta-analysis (2000).
        Neurophysiologie Clinique-Clinical Neurophysiology. 2000; 30: 263-288
        • Eccleston C.
        • Crombez G.
        Attention and pain: merging behavioural and neuroscience investigations.
        Pain. 2005; 113: 7-8
        • Porreca F.
        • Ossipov M.H.
        • Gebhart G.F.
        Chronic pain and medullary descending facilitation.
        Trends in Neurosciences. 2002; 25: 319-325
        • Dickenson A.H.
        Gate control theory of pain stands the test of time.
        BJA. 2002; 88: 755-757
        • Alarmo E.L.
        • Korhonen T.
        • Kuukasjarvi T.
        • et al.
        Bone morphogenetic protein 7 expression associates with bone metastasis in breast carcinomas.
        Annals of Oncology. 2008; 19: 308-314
        • Luger N.M.
        • Mach D.B.
        • Sevcik M.A.
        • Mantyh P.W.
        Bone cancer pain: from model to mechanism to therapy.
        Journal of Pain & Symptom Management. 2005; 29: S32-S46
        • Peters C.M.
        • Ghilardi J.R.
        • Keyser C.P.
        • et al.
        Tumor-induced injury of primary afferent sensory nerve fibers in bone cancer pain.
        Experimental Neurology. 2005; 193: 85-100
        • Martin C.D.
        • Jimenez-Andrade J.M.
        • Ghilardi J.R.
        • Mantyh P.W.
        Organization of a unique net-like meshwork of CGRP+ sensory fibers in the mouse periosteum: implications for the generation and maintenance of bone fracture pain.
        Neurosci Lett. 2007; 427: 148-152
        • DeLeo J.A.
        • Colburn R.W.
        • Rickman A.J.
        Cytokine and growth factor immunohistochemical spinal profiles in two animal models of mononeuropathy.
        Brain Research. 1997; 759: 50-57
        • Wagner R.
        • Myers R.R.
        Schwann cells produce tumor necrosis factor alpha: expression in injured and non-injured nerves.
        Neuroscience. 1996; 73: 625-629
        • Woolf C.J.
        • Ma Q.-P.
        • Allchorne A.
        • Poole S.
        Peripheral cell types contributing to the hyperalgesic action of nerve growth factor in inflammation.
        The Journal of Neuroscience. 1996; 16: 2716-2723
        • Sabino M.C.
        • Ghilardi J.R.
        • Feia K.J.
        • et al.
        The involvement of prostaglandins in tumorigenesis, tumor-induced osteolysis and bone cancer pain.
        Journal of Musculoskeletal Neuronal Interactions. 2002; 2: 561-562
        • Cain D.M.
        • Wacnik P.W.
        • Turner M.
        • et al.
        Functional interactions between tumor and peripheral nerve: Changes in excitability and morphology of primary afferent fibers in a murine model of cancer pain.
        J Neuroscience. 2001; 21: 9367-9376
        • Buijs J.T.
        • Henriquez N.V.
        • van Overveld P.G.
        • et al.
        TGF-beta and BMP7 interactions in tumour progression and bone metastasis.
        Clinical & Experimental Metastasis. 2007; 24: 609-617
        • Sato S.
        • Futakuchi M.
        • Ogawa K.
        • et al.
        Transforming growth factor beta derived from bone matrix promotes cell proliferation of prostate cancer and osteoclast activation-associated osteolysis in the bone microenvironment.
        Cancer Science. 2008; 99: 316-323
        • Kingsley L.A.
        • Fournier P.G.
        • Chirgwin J.M.
        • Guise T.A.
        Molecular biology of bone metastasis.
        Molecular Cancer Therapeutics. 2007; 6: 2609-2617
        • Boyle W.J.
        • Simonet W.S.
        • Lacey D.L.
        Osteoclast differentiation and activation.
        Nature. 2008; 423: 337-342
        • Kinder M.
        • Chislock E.
        • Bussard K.M.
        • et al.
        Metastatic breast cancer induces an osteoblast inflammatory response.
        Experimental Cell Research. 2008; 314: 173-183
        • Tsubaki M.
        • Kato C.
        • Manno M.
        • et al.
        Macrophage inflammatory protein-1alpha (MIP-1alpha) enhances a receptor activator of nuclear factor kappaB ligand (RANKL) expression in mouse bone marrow stromal cells and osteoblasts through MAPK and PI3K/Akt pathways.
        Molecular & Cellular Biochemistry. 2007; 304 (Oct): 53-60
        • Clohisy D.R.
        • Mantyh P.W.
        Bone cancer pain and the role of RANKL/OPG.
        Journal of Musculoskeletal Neuronal Interactions. 2004; 4: 293-300
        • Walker K.
        • Medhurst S.J.
        • Kidd B.L.
        • et al.
        Disease modifying and anti-nociceptive effects of the bisphosphonate, zoledronic acid in a model of bone cancer pain.
        Pain. 2002; 100: 219-229
        • Medhurst S.
        • Bowes M.
        • Kidd B.L.
        • et al.
        Antinociceptive effects of the bisphosphonate, zoledronic acid, in a novel rat model of bone cancer pain.
        British Journal of Pharmacology. 2001; 134: 156P
        • Jimenez-Andrade J.M.
        • Martin C.D.
        • Koewler N.J.
        • et al.
        Nerve growth factor sequestering therapy attenuates non-malignant skeletal pain following fracture.
        Pain. 2007; 133: 183-196
        • Yamamoto J.
        • Kawamata T.
        • Niiyama Y.
        • et al.
        Down-regulation of mu opioid receptor expression within distinct subpopulations of dorsal root ganglion neurons in a murine model of bone cancer pain.
        Neuroscience. 2008; 151: 843-853
        • Luger N.M.
        • Sabino M.A.
        • Schwei M.J.
        • et al.
        Efficacy of systemic morphine suggests a fundamental difference in the mechanisms that generate bone cancer vs inflammatory pain.
        Pain. 2002; 99: 397-406
        • King T.
        • Vardanyan A.
        • Majuta L.
        • et al.
        Morphine treatment accelerates sarcoma-induced bone pain, bone loss, and spontaneous fracture in a murine model of bone cancer.
        Pain. 2007; 132: 154-168
        • Honore P.
        • Schwei J.
        • Rogers S.D.
        • et al.
        Cellular and neurochemical remodeling of the spinal cord in bone cancer pain.
        Prog Brain Res. 2000; 129: 389-397
        • Vanderah T.W.
        • Ossipov M.H.
        • Lai J.
        • Malan T.P.
        • Porreca F.
        Mechanisms of opioid-induced pain and antinociceptive tolerance: descending facilitation and spinal dynorphin.
        Pain. 2001; 92: 5-9
        • Porreca F.
        • Ossipov M.H.
        • Gebhart G.F.
        Chronic pain and medullary descending facilitation.
        Trends in Neurosciences. 2002; 25: 319-325
        • Honore P.
        • Mantyh P.W.
        Bone cancer pain: From mechanism to model to therapy.
        Pain Medicine. 2000; 1: 303-309
        • Woolf C.J.
        Central sensitization: uncovering the relation between pain and plasticity.
        Anesthesiology. 2007; 106: 864-867
        • Scholz J.
        • Woolf C.J.
        The neuropathic pain triad: neurons, immune cells and glia.
        Nature Neuroscience. 2007; 10: 1361-1368
        • Khasabov S.G.
        • Hamamoto D.T.
        • Harding-Rose C.
        • Simone D.A.
        Tumor-evoked hyperalgesia and sensitization of nociceptive dorsal horn neurons in a murine model of cancer pain.
        Brain Research. 2007; 1180: 7-19
        • Donovan-Rodriguez T.
        • Dickenson A.H.
        • Urch C.E.
        Gabapentin Normalizes Spinal Neuronal Responses That Correlate with Behavior in a Rat Model of Cancer-induced Bone Pain.
        Anesthesiology. 2005; 102: 132-140
        • Urch C.E.
        • Donovan-Rodriguez T.
        • Dickenson A.H.
        Alterations in dorsal horn neurones in a rat model of cancer-induced bone pain.
        Pain. 2003; 106: 347-356
      2. Walley J, Colvin L, Fallon MT. Characterisation of malignant bone pain. Proceedings of the NCRI Conference 2006;62.

      3. McQuay HJ, Collins SL, Carroll D, Moore RA. Radiotherapy for the palliation of painful bone metastases. Cochrane Database Syst Rev 2000;CD001793.

        • de Wit R.
        • van Dam F.
        • Loonstra S.
        • et al.
        the Amsterdam Pain Management Index compared to eight frequently used outcome measures to evaluate the adequacy of pain treatment in cancer patients with chronic pain.
        Pain. 2001; 91: 339-349
        • Meuser T.
        • Pietruck C.
        • Radbruch L.
        • Stute P.
        • Lehmann K.A.
        • Grond S.
        Symptoms during cancer pain treatment following WHO-guidelines: a longitudinal follow-up study of symptom prevalence, severity and etiology.
        Pain. 2001; 93: 247-257
        • Serafini A.N.
        Therapy of metastatic bone pain.
        J Nucl Med. 2001; 42: 895-906
      4. Wong R, Wiffen PJ. Bisphosphonates for the relief of pain secondary to bone metastases. Cochrane Database Syst Rev 2002;CD002068.

        • Mercadante S.
        • Radbruch L.
        • Caraceni A.
        • et al.
        Episodic (breakthrough) pain: consensus conference of an expert working group of the European Association of Palliative Care.
        Cancer. 2002; 94: 832-839
      5. Zeppetella G, Ribeiro MDC. Opioids for the management of breakthrough (episodic) pain in cancer patients. Cochrane Database of Systematic Reviews 2006, Issue 1.

        • Fucella L.
        • Conti F.
        • Corvi G.
        • Mandelli V.
        • Randelli M.
        • Stefanelli G.
        Double-blind study of the analgesic effect of indoprofen (K4277).
        Clin Pharmacol Therap. 1974; 3: 277-283
        • Ventafridda V.
        • Martino G.
        • Mandelli V.
        • Emanueli A.
        Idoprofen, a new analgesic and anti-inflammatory drug in cancer pain.
        Clin Pharmacol Therap. 1974; 2: 284-289
        • Stambaugh J.
        • Drew J.
        A double-blind parallel evaluation of the efficacy and safety of a single dose of ketoprofen in cancer pain.
        J Clin Pharmacol. 1988; 28: S34-S39
        • Sunshine A.
        • Olson N.Z.
        Analgesic efficacy of ketoprofen in postpartum, general surgery, and chronic cancer pain.
        J Clin Pharmacol. 1988; 28: S47-S54
        • Minotti V.
        • Patoia L.
        • Roila F.
        • et al.
        Double-blind evaluation of analgesic efficacy of orally administered diclofenac, nefopam, and acetylsalicylic acid (ASA) plus codeine in chronic cancer pain.
        Pain. 1989; 36: 177-183
        • Staquet M.J.
        A double-blind study with placebo control of intramuscular ketorolac tromethamine in the treatment of cancer pain.
        J Clin Pharmacol. 1989; 29: 1031-1036
        • Estape J.
        • Vinolas N.
        • Gonzalez B.
        • et al.
        Ketorolac, a new non-opioid analgesic : a double-blind trial versus pentazocine in cancer pain.
        J Int Med Res. 1990; 18: 298-304
        • Minotti V.
        • Beeti M.
        • Ciccarese G.
        • Fumi G.
        • Tonato M.
        • Del Favero A.
        A double-blind study comparing two single-dose regimens of ketorolac with diclofenac in pain due to cancer.
        Pharmacotherapy. 1998; 18: 504-508
        • Mercadante S.
        • Fulfaro F.
        • Casuccio A.
        A randomised controlled study on the use of anti-inflammatory drugs in patients with cancer pain on morphine therapy: effects on dose-escalation and a pharmacoeconomic analysis.
        Eur J Cancer. 2002; 38: 1358-1363
        • Sheng H.
        • Shao J.
        • Kirkland S.C.
        • et al.
        Inhibition of human colon cancer cell growth by selective inhibition of cyclooxygenase-2.
        J Clin Invest. 1997; 99: 2254-2259
        • Sumitani K.
        • Kamijo R.
        • Toyoshima T.
        • et al.
        Specific inhibition of cyclooxygenase-2 results in inhibition of proliferation of oral cancer cell lines via suppression of prostaglandin E2 production.
        J Oral Pathol Med. 2001; 30: 41-47
        • Sabino M.A.
        • Ghilardi J.R.
        • Jongen J.L.
        • et al.
        Simultaneous reduction in cancer pain, bone destruction, and tumor growth by selective inhibition of cyclooxygenase-2.
        Cancer Res. 2002; 62: 7343-7349
        • Ross J.R.
        • Saunders Y.
        • Edmonds P.M.
        • Patel S.
        • Broadley K.E.
        • Johnston S.R.
        Systematic review of role of bisphosphonates on skeletal morbidity in metastatic cancer.
        BMJ. 2003; 327: 469
        • Body J.J.
        • Griepp P.
        • Coleman R.E.
        • et al.
        A phase 1 study of AMGN-0007, a recombinant osteoprotegerin construct, in patients with multiple myeloma or breast carcinoma related bone metastases.
        Cancer. 2003; 97: 887-892
        • Gramooun A.
        • Shorey S.
        • Bashutski J.D.
        • et al.
        Effects of Vitaxin, a novel therapeutic in trial for metastatic bone tumors, on osteoclast function in vitro.
        Journal of Cellular Biochemistry. 2007; 102: 341-352
        • Nelson J.B.
        Endothelin inhibition: novel therapy for prostate cancer.
        Journal of Urology. 2003; 170 ([discussion S6708]): S65-S67