Advertisement

Ageing or cancer: A review

On the role of caretakers and gatekeepers
Published:August 31, 2007DOI:https://doi.org/10.1016/j.ejca.2007.07.011

      Abstract

      Ageing is due to the accumulation of damage, which arises because of evolved limitations in mechanisms for maintenance and repair. Accumulated damage may cause genomic instability, which in organisms with renewable tissues may result in cancer. To keep cancer at bay, two different tumour suppression mechanisms evolved: caretakers and gatekeepers. Caretakers protect the genome against mutations, while gatekeepers induce cell death or cell cycle arrest of potentially tumourigenic cells. It has been hypothesised that decreased activity of a caretaker may reduce life span, by increasing cancer risk, while the effects of increased activity of a gatekeeper on cancer risk and life span may be antagonistically pleiotropic. Apoptosis and senescence will promote early-life survival by curtailing the development of cancer, but may eventually limit longevity. This article reviews the evidence for this hypothesis. We conclude that several different findings indeed hint at an important role for gatekeeper mediated processes in ageing and its related pathologies. The relative contribution of apoptosis and senescence in specific age-related pathologies remains to be established.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to European Journal of Cancer
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Campisi J.
        Cancer and ageing: rival demons?.
        Nat Rev Cancer. 2003; 3: 339-349
        • Campisi J.
        Senescent cells, tumor suppression, and organismal aging: good citizens, bad neighbors.
        Cell. 2005; 120: 513-522
        • Hanahan D.
        • Weinberg R.A.
        The hallmarks of cancer.
        Cell. 2000; 100: 57-70
        • Kinzler K.W.
        • Vogelstein B.
        Cancer-susceptibility genes. Gatekeepers and caretakers.
        Nature. 1997; 386: 761-763
        • Kapahi P.
        • Boulton M.E.
        • Kirkwood T.B.
        Positive correlation between mammalian life span and cellular resistance to stress.
        Free Radic Biol Med. 1999; 26: 495-500
        • Murakami S.
        • Salmon A.
        • Miller R.A.
        Multiplex stress resistance in cells from long-lived dwarf mice.
        FASEB J. 2003; 17: 1565-1566
        • Hoeijmakers J.H.
        Genome maintenance mechanisms for preventing cancer.
        Nature. 2001; 411: 366-374
        • Levitt N.C.
        • Hickson I.D.
        Caretaker tumour suppressor genes that defend genome integrity.
        Trends Mol Med. 2002; 8: 179-186
        • van Heemst D.
        • Brugmans L.
        • Verkaik N.S.
        • et al.
        End-joining of blunt DNA double-strand breaks in mammalian fibroblasts is precise and requires DNA-PK and XRCC4.
        DNA Repair (Amst). 2004; 3: 43-50
        • Hoeijmakers J.H.
        DNA repair mechanisms.
        Maturitas. 2001; 38: 17-22
        • de Boer J.
        • Hoeijmakers J.H.
        Nucleotide excision repair and human syndromes.
        Carcinogenesis. 2000; 21: 453-460
        • Andressoo J.O.
        • Hoeijmakers J.H.
        • Mitchell J.R.
        Nucleotide excision repair disorders and the balance between cancer and aging.
        Cell Cycle. 2006; 5: 2886-2888
        • Derheimer F.A.
        • Chang C.W.
        • Ljungman M.
        Transcription inhibition: a potential strategy for cancer therapeutics.
        Eur J Cancer. 2005; 41: 2569-2576
        • Ljungman M.
        • Lane D.P.
        Transcription – guarding the genome by sensing DNA damage.
        Nat Rev Cancer. 2004; 4: 727-737
        • Vogelstein B.
        • Lane D.
        • Levine A.J.
        Surfing the p53 network.
        Nature. 2000; 408: 307-310
        • Hampel B.
        • Malisan F.
        • Niederegger H.
        • et al.
        Differential regulation of apoptotic cell death in senescent human cells.
        Exp Gerontol. 2004; 39: 1713-1721
        • Lozano G.
        • Elledge S.J.
        p53 sends nucleotides to repair DNA.
        Nature. 2000; 404: 24-25
        • Malkin D.
        • Li F.P.
        • Strong L.C.
        • et al.
        Germ line p53 mutations in a familial syndrome of breast cancer, sarcomas, and other neoplasms.
        Science. 1990; 250: 1233-1238
        • Donehower L.A.
        • Harvey M.
        • Slagle B.L.
        • et al.
        Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours.
        Nature. 1992; 356: 215-221
        • Donehower L.A.
        Does p53 affect organismal aging?.
        J Cell Physiol. 2002; 192: 23-33
        • Tyner S.D.
        • Venkatachalam S.
        • Choi J.
        • et al.
        p53 mutant mice that display early ageing-associated phenotypes.
        Nature. 2002; 415: 45-53
        • Maier B.
        • Gluba W.
        • Bernier B.
        • et al.
        Modulation of mammalian life span by the short isoform of p53.
        Genes Dev. 2004; 18: 306-319
        • Garcia-Cao I.
        • Garcia-Cao M.
        • Martin-Caballero J.
        • et al.
        “Super p53” mice exhibit enhanced DNA damage response, are tumor resistant and age normally.
        EMBO J. 2002; 21: 6225-6235
        • Meier P.
        • Finch A.
        • Evan G.
        Apoptosis in development.
        Nature. 2000; 407: 796-801
        • Green D.R.
        • Reed J.C.
        Mitochondria and apoptosis.
        Science. 1998; 281: 1309-1312
        • Fridman J.S.
        • Lowe S.W.
        Control of apoptosis by p53.
        Oncogene. 2003; 22: 9030-9040
        • Chipuk J.E.
        • Kuwana T.
        • Bouchier-Hayes L.
        • et al.
        Direct activation of Bax by p53 mediates mitochondrial membrane permeabilization and apoptosis.
        Science. 2004; 303: 1010-1014
        • Nishimura E.K.
        • Granter S.R.
        • Fisher D.E.
        Mechanisms of hair graying: incomplete melanocyte stem cell maintenance in the niche.
        Science. 2005; 307: 720-724
        • Higami Y.
        • Shimokawa I.
        Apoptosis in the aging process.
        Cell Tissue Res. 2000; 301: 125-132
        • Savory J.
        • Rao J.K.
        • Huang Y.
        • et al.
        Age-related hippocampal changes in Bcl-2:Bax ratio, oxidative stress, redox-active iron and apoptosis associated with aluminum-induced neurodegeneration: increased susceptibility with aging.
        Neurotoxicology. 1999; 20: 805-817
        • Horton Jr., W.E.
        • Feng L.
        • Adams C.
        Chondrocyte apoptosis in development, aging and disease.
        Matrix Biol. 1998; 17: 107-115
        • Kinkel M.D.
        • Yagi R.
        • McBurney D.
        • et al.
        Age-related expression patterns of Bag-1 and Bcl-2 in growth plate and articular chondrocytes.
        Anat Rec A Discov Mol Cell Evol Biol. 2004; 279: 720-728
        • Liu L.
        • Azhar G.
        • Gao W.
        • et al.
        Bcl-2 and Bax expression in adult rat hearts after coronary occlusion: age-associated differences.
        Am J Physiol. 1998; 275: R315-R322
        • Joaquin A.M.
        • Gollapudi S.
        Functional decline in aging and disease: a role for apoptosis.
        J Am Geriatr Soc. 2001; 49: 1234-1240
        • Ginaldi L.
        • De Martinis M.
        • D’Ostilio A.
        • et al.
        Cell proliferation and apoptosis in the immune system in the elderly.
        Immunol Res. 2000; 21: 31-38
        • Gupta S.
        Molecular and biochemical pathways of apoptosis in lymphocytes from aged humans.
        Vaccine. 2000; 18: 1596-1601
        • Phillips T.
        • Leeuwenburgh C.
        Muscle fiber specific apoptosis and TNF-alpha signaling in sarcopenia are attenuated by life-long calorie restriction.
        FASEB J. 2005; 19: 668-670
        • Stein G.H.
        • Dulic V.
        Origins of G1 arrest in senescent human fibroblasts.
        Bioessays. 1995; 17: 537-543
        • Ashcroft M.
        • Vousden K.H.
        Regulation of p53 stability.
        Oncogene. 1999; 18: 7637-7643
        • Weber J.D.
        • Taylor L.J.
        • Roussel M.F.
        • et al.
        Nucleolar Arf sequesters Mdm2 and activates p53.
        Nat Cell Biol. 1999; 1: 20-26
        • Weber J.D.
        • Kuo M.L.
        • Bothner B.
        • et al.
        Cooperative signals governing ARF-mdm2 interaction and nucleolar localization of the complex.
        Mol Cell Biol. 2000; 20: 2517-2528
        • el Deiry W.S.
        • Tokino T.
        • Velculescu V.E.
        • et al.
        WAF1, a potential mediator of p53 tumor suppression.
        Cell. 1993; 75: 817-825
        • Marx J.
        How p53 suppresses cell growth.
        Science. 1993; 262: 1644-1645
        • Li J.Q.
        • Wu F.
        • Usuki H.
        • et al.
        Loss of p57KIP2 is associated with colorectal carcinogenesis.
        Int J Oncol. 2003; 23: 1537-1543
        • Takahashi K.
        • Nakayama K.
        • Nakayama K.
        Mice lacking a CDK inhibitor, p57Kip2, exhibit skeletal abnormalities and growth retardation.
        J Biochem (Tokyo). 2000; 127: 73-83
        • Sharpless N.E.
        Ink4a/Arf links senescence and aging.
        Exp Gerontol. 2004; 39: 1751-1759
        • Russo A.A.
        • Tong L.
        • Lee J.O.
        • et al.
        Structural basis for inhibition of the cyclin-dependent kinase Cdk6 by the tumour suppressor p16INK4a.
        Nature. 1998; 395: 237-243
        • Stein G.H.
        • Drullinger L.F.
        • Soulard A.
        • et al.
        Differential roles for cyclin-dependent kinase inhibitors p21 and p16 in the mechanisms of senescence and differentiation in human fibroblasts.
        Mol Cell Biol. 1999; 19: 2109-2117
        • Alcorta D.A.
        • Xiong Y.
        • Phelps D.
        • et al.
        Involvement of the cyclin-dependent kinase inhibitor p16 (INK4a) in replicative senescence of normal human fibroblasts.
        Proc Natl Acad Sci USA. 1996; 93: 13742-13747
        • Nevins J.R.
        E2F: a link between the Rb tumor suppressor protein and viral oncoproteins.
        Science. 1992; 258: 424-429
        • Irminger-Finger I.
        Science of cancer and aging.
        J Clin Oncol. 2007; 25: 1844-1851
        • Maddika S.
        • Ande S.R.
        • Panigrahi S.
        • et al.
        Cell survival, cell death and cell cycle pathways are interconnected: implications for cancer therapy.
        Drug Resist Updat. 2007; 10: 13-29
        • Dimri G.P.
        • Lee X.
        • Basile G.
        • et al.
        A biomarker that identifies senescent human cells in culture and in aging skin in vivo.
        Proc Natl Acad Sci USA. 1995; 92: 9363-9367
        • Krishnamurthy J.
        • Torrice C.
        • Ramsey M.R.
        • et al.
        Ink4a/Arf expression is a biomarker of aging.
        J Clin Invest. 2004; 114: 1299-1307
        • Marcotte R.
        • Lacelle C.
        • Wang E.
        Senescent fibroblasts resist apoptosis by downregulating caspase-3.
        Mech Ageing Dev. 2004; 125: 777-783
        • Seluanov A.
        • Gorbunova V.
        • Falcovitz A.
        • et al.
        Change of the death pathway in senescent human fibroblasts in response to DNA damage is caused by an inability to stabilize p53.
        Mol Cell Biol. 2001; 21: 1552-1564
        • Paradis V.
        • Youssef N.
        • Dargere D.
        • et al.
        Replicative senescence in normal liver, chronic hepatitis C, and hepatocellular carcinomas.
        Hum Pathol. 2001; 32: 327-332
        • Vasile E.
        • Tomita Y.
        • Brown L.F.
        • et al.
        Differential expression of thymosin beta-10 by early passage and senescent vascular endothelium is modulated by VPF/VEGF: evidence for senescent endothelial cells in vivo at sites of atherosclerosis.
        FASEB J. 2001; 15: 458-466
        • Smith J.R.
        • Pereira-Smith O.M.
        Replicative senescence: implications for in vivo aging and tumor suppression.
        Science. 1996; 273: 63-67
        • Yoon I.K.
        • Kim H.K.
        • Kim Y.K.
        • et al.
        Exploration of replicative senescence-associated genes in human dermal fibroblasts by cDNA microarray technology.
        Exp Gerontol. 2004; 39: 1369-1378
        • Funk W.D.
        • Wang C.K.
        • Shelton D.N.
        • et al.
        Telomerase expression restores dermal integrity to in vitro-aged fibroblasts in a reconstituted skin model.
        Exp Cell Res. 2000; 258: 270-278
        • Krtolica A.
        • Campisi J.
        Cancer and aging: a model for the cancer promoting effects of the aging stroma.
        Int J Biochem Cell Biol. 2002; 34: 1401-1414
        • Reya T.
        • Morrison S.J.
        • Clarke M.F.
        • et al.
        Stem cells, cancer, and cancer stem cells.
        Nature. 2001; 414: 105-111
        • Conboy I.M.
        • Conboy M.J.
        • Wagers A.J.
        • et al.
        Rejuvenation of aged progenitor cells by exposure to a young systemic environment.
        Nature. 2005; 433: 760-764
        • Van Zant G.
        • Liang Y.
        The role of stem cells in aging.
        Exp Hematol. 2003; 31: 659-672
        • Zhang X.
        • Li J.
        • Sejas D.P.
        • et al.
        The ATM/p53/p21 pathway influences cell fate decision between apoptosis and senescence in reoxygenated hematopoietic progenitor cells.
        J Biol Chem. 2005; 280: 19635-19640
        • Weston A.
        • Ling-Cawley H.M.
        • Caporaso N.E.
        • et al.
        Determination of the allelic frequencies of an L-myc and a p53 polymorphism in human lung cancer.
        Carcinogenesis. 1994; 15: 583-587
        • Dumont P.
        • Leu J.I.
        • Della III., P.A.
        • et al.
        The codon 72 polymorphic variants of p53 have markedly different apoptotic potential.
        Nat Genet. 2003; 33: 357-365
        • Pim D.
        • Banks L.
        p53 polymorphic variants at codon 72 exert different effects on cell cycle progression.
        Int J Cancer. 2004; 108: 196-199
        • Sullivan A.
        • Syed N.
        • Gasco M.
        • et al.
        Polymorphism in wild-type p53 modulates response to chemotherapy in vitro and in vivo.
        Oncogene. 2004; 23: 3328-3337
        • Bonafe M.
        • Salvioli S.
        • Barbi C.
        • et al.
        The different apoptotic potential of the p53 codon 72 alleles increases with age and modulates in vivo ischaemia-induced cell death.
        Cell Death Differ. 2004; 11: 962-973
        • Salvioli S.
        • Bonafe M.
        • Barbi C.
        • et al.
        p53 codon 72 alleles influence the response to anticancer drugs in cells from aged people by regulating the cell cycle inhibitor p21WAF1.
        Cell Cycle. 2005; 4: 1264-1271
        • van Heemst D.
        • Mooijaart S.P.
        • Beekman M.
        • et al.
        Variation in the human TP53 gene affects old age survival and cancer mortality.
        Exp Gerontol. 2005; 40: 11-15
        • Bonafe M.
        • Barbi C.
        • Storci G.
        • et al.
        What studies on human longevity tell us about the risk for cancer in the oldest old: data and hypotheses on the genetics and immunology of centenarians.
        Exp Gerontol. 2002; 37: 1263-1271
        • Pollack M.
        • Phaneuf S.
        • Dirks A.
        • et al.
        The role of apoptosis in the normal aging brain, skeletal muscle, and heart.
        Ann N Y Acad Sci. 2002; 959: 93-107
        • Arendt T.
        • Rodel L.
        • Gartner U.
        • et al.
        Expression of the cyclin-dependent kinase inhibitor p16 in Alzheimer’s disease.
        Neuroreport. 1996; 7: 3047-3049
        • Luth H.J.
        • Holzer M.
        • Gertz H.J.
        • et al.
        Aberrant expression of nNOS in pyramidal neurons in Alzheimer’s disease is highly co-localized with p21ras and p16INK4a.
        Brain Res. 2000; 852: 45-55
        • McShea A.
        • Harris P.L.
        • Webster K.R.
        • et al.
        Abnormal expression of the cell cycle regulators P16 and CDK4 in Alzheimer’s disease.
        Am J Pathol. 1997; 150: 1933-1939
        • Chimenti C.
        • Kajstura J.
        • Torella D.
        • et al.
        Senescence and death of primitive cells and myocytes lead to premature cardiac aging and heart failure.
        Circ Res. 2003; 93: 604-613
        • Kajstura J.
        • Pertoldi B.
        • Leri A.
        • et al.
        Telomere shortening is an in vivo marker of myocyte replication and aging.
        Am J Pathol. 2000; 156: 813-819
        • Carrington J.L.
        Aging bone and cartilage: cross-cutting issues.
        Biochem Biophys Res Commun. 2005; 328: 700-708
        • Vermeulen W.
        • de Boer J.
        • Citterio E.
        • et al.
        Mammalian nucleotide excision repair and syndromes.
        Biochem Soc Trans. 1997; 25: 309-315
        • Leach F.S.
        • Nicolaides N.C.
        • Papadopoulos N.
        • et al.
        Mutations of a mutS homolog in hereditary nonpolyposis colorectal cancer.
        Cell. 1993; 75: 1215-1225
        • Nicolaides N.C.
        • Papadopoulos N.
        • Liu B.
        • et al.
        Mutations of two PMS homologues in hereditary nonpolyposis colon cancer.
        Nature. 1994; 371: 75-80
        • Papadopoulos N.
        • Nicolaides N.C.
        • Wei Y.F.
        • et al.
        Mutation of a mutL homolog in hereditary colon cancer.
        Science. 1994; 263: 1625-1629
        • Niedernhofer L.J.
        • Lalai A.S.
        • Hoeijmakers J.H.
        Fanconi anemia (cross)linked to DNA repair.
        Cell. 2005; 123: 1191-1198
        • Ben Omran T.I.
        • Cerosaletti K.
        • Concannon P.
        • et al.
        A patient with mutations in DNA Ligase IV: clinical features and overlap with Nijmegen breakage syndrome.
        Am J Med Genet A. 2005; 137: 283-287
        • Varon R.
        • Vissinga C.
        • Platzer M.
        • et al.
        Nibrin, a novel DNA double-strand break repair protein, is mutated in Nijmegen breakage syndrome.
        Cell. 1998; 93: 467-476
        • Ellis N.A.
        • Groden J.
        • Ye T.Z.
        • et al.
        The Bloom’s syndrome gene product is homologous to RecQ helicases.
        Cell. 1995; 83: 655-666
        • Yu C.E.
        • Oshima J.
        • Fu Y.H.
        • et al.
        Positional cloning of the Werner’s syndrome gene.
        Science. 1996; 272: 258-262
        • Kitao S.
        • Shimamoto A.
        • Goto M.
        • et al.
        Mutations in RECQL4 cause a subset of cases of Rothmund–Thomson syndrome.
        Nat Genet. 1999; 22: 82-84
        • Savitsky K.
        • Bar-Shira A.
        • Gilad S.
        • et al.
        A single ataxia telangiectasia gene with a product similar to PI-3 kinase.
        Science. 1995; 268: 1749-1753
        • Ford D.
        • Easton D.F.
        • Stratton M.
        • et al.
        Genetic heterogeneity and penetrance analysis of the BRCA1 and BRCA2 genes in breast cancer families. The Breast Cancer Linkage Consortium.
        Am J Hum Genet. 1998; 62: 676-689
        • Williams G.C.
        Pleiotropy, natural selection, and the evolution of senescence.
        Evolution. 1957; 11: 398-411
      1. Maas AAM, Janssen-Heijnen MLG, Olde Rikkert MGM, Wymenga ANM. Comprehensive geriatric assessment and its clinical impact in oncology. Eur J Cancer 2007 [this issue].

      2. Gosney M. Contribution of the Geriatrician to the management of cancer in older patients. Eur J Cancer 2007 [this issue].