Advertisement
Current Perspective| Volume 42, ISSUE 12, P1720-1727, August 2006

Clinical molecular imaging with positron emission tomography

      Abstract

      Molecular imaging allows for the in vivo evaluation of targeted molecules and biological processes in man. Positron emission tomography (PET) is a highly sensitive and quantitative molecular imaging modality, whose utility in clinical and experimental medicine is increasing by the day. In this article, the principles of PET and its currently accepted applications in oncology, such as cancer staging, treatment response assessment and as a prognostic marker are reviewed. Further, the evolving role of PET in areas of oncology such as radiotherapy treatment planning, anti-cancer drug development and the evaluation of patho-physiological processes which drive a cell into neoplastic activity is discussed.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to European Journal of Cancer
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Anderson H.L.
        • Yap J.T.
        • Miller M.P.
        • Robbins A.
        • Jones T.
        • Price P.M.
        Assessment of pharmacodynamic vascular response in a phase I trial of combretastatin A4 phosphate.
        J Clin Oncol. 2003; 21: 2823-2830
        • Saleem A.
        • Yap J.
        • Osman S.
        • et al.
        Modulation of fluorouracil tissue pharmacokinetics by eniluracil: in-vivo imaging of drug action.
        Lancet. 2000; 355: 2125-2131
        • Ell P.J.
        The contribution of PET/CT to improved patient management.
        Br J Radiol. 2006; 79: 32-36
        • Meikle S.R.
        • Matthews J.C.
        • Brock C.S.
        • et al.
        Pharmacokinetic assessment of novel anti-cancer drugs using spectral analysis and positron emission tomography: a feasibility study.
        Cancer Chemother Pharmacol. 1998; 42: 183-193
        • Lu H.
        • Forbes R.A.
        • Verma A.
        Hypoxia-inducible factor 1 activation by aerobic glycolysis implicates the Warburg effect in carcinogenesis.
        J Biol Chem. 2002; 277: 23111-23115
        • Khan M.A.
        • Combs C.S.
        • Brunt E.M.
        • et al.
        Positron emission tomography scanning in the evaluation of hepatocellular carcinoma.
        J Hepatol. 2000; 32: 792-797
        • Shvarts O.
        • Han K.R.
        • Seltzer M.
        • Pantuck A.J.
        • Belldegrun A.S.
        Positron emission tomography in urologic oncology.
        Cancer Control. 2002; 9: 335-342
        • Wells P.
        • Gunn R.N.
        • Alison M.
        • et al.
        Assessment of proliferation in vivo using 2-[(11)C]thymidine positron emission tomography in advanced intra-abdominal malignancies.
        Cancer Res. 2002; 62: 5698-5702
        • Shields A.F.
        • Grierson J.R.
        • Dohmen B.M.
        • et al.
        Imaging proliferation in vivo with [F-18]FLT and positron emission tomography.
        Nat Med. 1998; 4: 1334-1336
        • Barthel H.
        • Perumal M.
        • Latigo J.
        • et al.
        The uptake of 3’-deoxy-3’-[(18)F]fluorothymidine into L5178Y tumours in vivo is dependent on thymidine kinase 1 protein levels.
        Eur J Nucl Med Mol Imaging. 2005; 32: 257-263
        • Lu L.
        • Samuelsson L.
        • Bergstrom M.
        • Sato K.
        • Fasth K.J.
        • Langstrom B.
        Rat studies comparing 11C-FMAU, 18F-FLT, and 76Br-BFU as proliferation markers.
        J Nucl Med. 2002; 43: 1688-1698
        • Chen W.
        • Cloughesy T.
        • Kamdar N.
        • et al.
        Imaging proliferation in brain tumors with 18F-FLT PET: comparison with 18F-FDG.
        J Nucl Med. 2005; 46: 945-952
        • Saleem A.
        • Aboagye E.O.
        • Price P.M.
        In vivo monitoring of drugs using radiotracer techniques.
        Adv Drug Deliv Rev. 2000; 41: 21-39
        • Propper D.J.
        • de Bono J.
        • Saleem A.
        • et al.
        Use of positron emission tomography in pharmacokinetic studies to investigate therapeutic advantage in a phase I study of 120-hour intravenous infusion XR5000.
        J Clin Oncol. 2003; 21: 203-210
        • Saleem A.
        • Harte R.J.
        • Matthews J.C.
        • et al.
        Pharmacokinetic evaluation of N-[2-(dimethylamino)ethyl]acridine-4-carboxamide in patients by positron emission tomography.
        J Clin Oncol. 2001; 19: 1421-1429
        • Saleem A.
        • Brown G.D.
        • Brady F.
        • et al.
        Metabolic activation of temozolomide measured in vivo using positron emission tomography.
        Cancer Res. 2003; 63: 2409-2415
        • Ginos J.Z.
        • Cooper A.J.
        • Dhawan V.
        • et al.
        [13N]cisplatin PET to assess pharmacokinetics of intra-arterial versus intravenous chemotherapy for malignant brain tumors.
        J Nucl Med. 1987; 28: 1844-1852
        • Inoue T.
        • Kim E.E.
        • Wallace S.
        • et al.
        Positron emission tomography using [18F]fluorotamoxifen to evaluate therapeutic responses in patients with breast cancer: preliminary study.
        Cancer Biother Radiopharm. 1996; 11: 235-245
        • Gambhir S.S.
        • Czernin J.
        • Schwimmer J.
        • Silverman D.H.
        • Coleman R.E.
        • Phelps M.E.
        A tabulated summary of the FDG PET literature.
        J Nucl Med. 2001; 42: 1S-93S
        • van Tinteren H.
        • Hoekstra O.S.
        • Smit E.F.
        • van den Bergh J.H.
        • Schreurs A.J.
        • Stallaert R.A.
        • et al.
        Effectiveness of positron emission tomography in the preoperative assessment of patients with suspected non-small-cell lung cancer: the PLUS multicentre randomised trial.
        Lancet. 2002; 359: 1388-1393
        • Sharma A.
        • Fidias P.
        • Hayman L.A.
        • Loomis S.L.
        • Taber K.H.
        • Aquino S.L.
        Patterns of lymphadenopathy in thoracic malignancies.
        Radiographics. 2004; 24: 419-434
        • Kelloff G.J.
        • Hoffman J.M.
        • Johnson B.
        • et al.
        Progress and promise of FDG-PET imaging for cancer patient management and oncologic drug development.
        Clin Cancer Res. 2005; 11: 2785-2808
        • van Oosterom A.T.
        • Judson I.
        • Verweij J.
        • et al.
        Safety and efficacy of imatinib (STI571) in metastatic gastrointestinal stromal tumours: a phase I study.
        Lancet. 2001; 358: 1421-1423
        • Blay J.Y.
        • Bonvalot S.
        • Casali P.
        • et al.
        Consensus meeting for the management of gastrointestinal stromal tumors. Report of the GIST Consensus Conference of 20–21 March 2004, under the auspices of ESMO.
        Ann Oncol. 2005; 16: 566-578
        • Mikhaeel N.G.
        • Hutchings M.
        • Fields P.A.
        • O’Doherty M.J.
        • Timothy A.R.
        FDG-PET after two to three cycles of chemotherapy predicts progression-free and overall survival in high-grade non-Hodgkin lymphoma.
        Ann Oncol. 2005; 16: 1514-1523
        • Weber W.A.
        • Ott K.
        • Becker K.
        • et al.
        Prediction of response to preoperative chemotherapy in adenocarcinomas of the esophagogastric junction by metabolic imaging.
        J Clin Oncol. 2001; 19: 3058-3065
        • Ott K.
        • Fink U.
        • Becker K.
        • et al.
        Prediction of response to preoperative chemotherapy in gastric carcinoma by metabolic imaging: results of a prospective trial.
        J Clin Oncol. 2003; 21: 4604-4610
        • Brun E.
        • Kjellen E.
        • Tennvall J.
        • et al.
        FDG PET studies during treatment: prediction of therapy outcome in head and neck squamous cell carcinoma.
        Head Neck. 2002; 24: 127-135
        • Hoekstra C.J.
        • Stroobants S.G.
        • Smit E.F.
        • et al.
        Prognostic relevance of response evaluation using [18F]-2-fluoro-2-deoxy-D-glucose positron emission tomography in patients with locally advanced non-small-cell lung cancer.
        J Clin Oncol. 2005; 23: 8362-8370
        • Cremerius U.
        • Fabry U.
        • Neuerburg J.
        • Zimny M.
        • Bares R.
        • Osieka R.
        • et al.
        Prognostic significance of positron emission tomography using fluorine-18-fluorodeoxyglucose in patients treated for malignant lymphoma.
        Nuklearmedizin. 2001; 40: 23-30
        • Spaepen K.
        • Stroobants S.
        • Dupont P.
        • et al.
        Prognostic value of positron emission tomography (PET) with fluorine-18 fluorodeoxyglucose ([18F]FDG) after first-line chemotherapy in non-Hodgkin’s lymphoma: is [18F]FDG-PET a valid alternative to conventional diagnostic methods?.
        J Clin Oncol. 2001; 19: 414-419
        • Weihrauch M.R.
        • Re D.
        • Scheidhauer K.
        • et al.
        Thoracic positron emission tomography using 18F-fluorodeoxyglucose for the evaluation of residual mediastinal Hodgkin disease.
        Blood. 2001; 98: 2930-2934
        • Juweid M.E.
        • Wiseman G.A.
        • Vose J.M.
        • et al.
        Response assessment of aggressive non-Hodgkin’s lymphoma by integrated International Workshop Criteria and fluorine-18-fluorodeoxyglucose positron emission tomography.
        J Clin Oncol. 2005; 23: 4652-4661
        • Schuetze S.M.
        • Rubin B.P.
        • Vernon C.
        • et al.
        Use of positron emission tomography in localized extremity soft tissue sarcoma treated with neoadjuvant chemotherapy.
        Cancer. 2005; 103: 339-348
        • Swisher S.G.
        • Erasmus J.
        • Maish M.
        • et al.
        2-Fluoro-2-deoxy-D-glucose positron emission tomography imaging is predictive of pathologic response and survival after preoperative chemoradiation in patients with esophageal carcinoma.
        Cancer. 2004; 101: 1776-1785
        • MacManus M.P.
        • Hicks R.J.
        • Matthews J.P.
        • et al.
        Positron emission tomography is superior to computed tomography scanning for response-assessment after radical radiotherapy or chemoradiotherapy in patients with non-small-cell lung cancer.
        J Clin Oncol. 2003; 21: 1285-1292
        • Kunkel M.
        • Forster G.J.
        • Reichert T.E.
        • et al.
        Radiation response non-invasively imaged by [18F]FDG-PET predicts local tumor control and survival in advanced oral squamous cell carcinoma.
        Oral Oncol. 2003; 39: 170-177
        • Grigsby P.W.
        • Siegel B.A.
        • Dehdashti F.
        • Rader J.
        • Zoberi I.
        Posttherapy [18F] fluorodeoxyglucose positron emission tomography in carcinoma of the cervix: response and outcome.
        J Clin Oncol. 2004; 22: 2167-2171
        • Vanuytsel L.J.
        • Vansteenkiste J.F.
        • Stroobants S.G.
        • et al.
        The impact of (18)F-fluoro-2-deoxy-D-glucose positron emission tomography (FDG-PET) lymph node staging on the radiation treatment volumes in patients with non-small cell lung cancer.
        Radiother Oncol. 2000; 55: 317-324
        • Nestle U.
        • Walter K.
        • Schmidt S.
        • et al.
        18F-deoxyglucose positron emission tomography (FDG-PET) for the planning of radiotherapy in lung cancer: high impact in patients with atelectasis.
        Int J Radiat Oncol Biol Phys. 1999; 44: 593-597
        • Grosu A.L.
        • Piert M.
        • Weber W.A.
        • et al.
        Positron emission tomography for radiation treatment planning.
        Strahlenther Onkol. 2005; 181: 483-499
        • Grosu A.L.
        • Weber W.A.
        • Franz M.
        • et al.
        Reirradiation of recurrent high-grade gliomas using amino acid PET (SPECT)/CT/MRI image fusion to determine gross tumor volume for stereotactic fractionated radiotherapy.
        Int J Radiat Oncol Biol Phys. 2005; 63: 511-519
        • Paxton J.W.
        • Young D.
        • Evans S.M.
        • Kestell P.
        • Robertson I.G.
        • Cornford E.M.
        Pharmacokinetics and toxicity of the antitumour agent N-[2- (dimethylamino)ethyl]acridine-4-carboxamide after i.v. administration in the mouse.
        Cancer Chemother Pharmacol. 1992; 29: 379-384
        • Baker S.D.
        • Wirth M.
        • Statkevich P.
        • et al.
        Absorption, metabolism, and excretion of 14C-temozolomide following oral administration to patients with advanced cancer.
        Clin Cancer Res. 1999; 5: 309-317
        • Moehler M.
        • Dimitrakopoulou-Strauss A.
        • Gutzler F.
        • Raeth U.
        • Strauss L.G.
        • Stremmel W.
        18F-labeled fluorouracil positron emission tomography and the prognoses of colorectal carcinoma patients with metastases to the liver treated with 5-fluorouracil.
        Cancer. 1998; 83: 245-253
        • Thorwarth D.
        • Eschmann S.M.
        • Paulsen F.
        • Alber M.
        A kinetic model for dynamic [18F]-Fmiso PET data to analyse tumour hypoxia.
        Phys Med Biol. 2005; 50: 2209-2224
        • Glaser M.
        • Collingridge D.R.
        • Aboagye E.O.
        • et al.
        Iodine-124 labelled annexin-V as a potential radiotracer to study apoptosis using positron emission tomography.
        Appl Radiat Isot. 2003; 58: 55-62
        • Collingridge D.R.
        • Carroll V.A.
        • Glaser M.
        • et al.
        The development of [(124)I]iodinated-VG76e: a novel tracer for imaging vascular endothelial growth factor in vivo using positron emission tomography.
        Cancer Res. 2002; 62: 5912-5919
        • Blasberg R.
        PET imaging of gene expression.
        Eur J Cancer. 2002; 38: 2137-2146
        • Aboagye E.
        • Saleem A.
        • Price P.
        Tumor imaging applications in the testing of new drugs.
        in: Baguley B. Kerr D. Anticancer drug development. Academic Press, London, UK2002