Advertisement
Research Article| Volume 42, ISSUE 12, P1881-1888, August 2006

TRF2 inhibition triggers apoptosis and reduces tumourigenicity of human melanoma cells

      Abstract

      The inhibition of the telomere-binding protein TRF2, by expressing the dominant negative form TRF2ΔBΔC, has been used as a model of anti-telomere strategy to induce a reversion of the malignant phenotype of M14 and JR5 human melanoma lines. Over-expression of TRF2ΔBΔC induced apoptosis and reduced tumourigenicity exclusively in JR5 cells. p53 and Rb status and apoptotic response to DNA damage did not seem to account for the different response of the two lines to TRF2 inhibition. Interestingly, JR5 cells possess shorter and more dysfunctional telomeres compared to M14 line. Moreover, the treatment with the G-quadruplex-interacting agent (G4-ligand) RHPS4 sensitises M14 cells to TRF2 inhibition. These results demonstrate that TRF2 can impair tumuorigenicity of human cancer cells. They further suggest that a basal level of telomere instability favours an efficient response to TRF2 inhibition and that a combined anti-TRF2 and G4-ligand therapy would have synergistic inhibitory effects on tumour cell growth.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to European Journal of Cancer
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • de Lange T.
        • Jacks T.
        For better or worse? Telomerase inhibition and cancer.
        Cell. 1999; 98: 273-275
        • Morin G.B.
        The human telomere terminal transferase enzyme is a ribonucleoprotein that synthesizes TTAGGG repeats.
        Cell. 1989; 59: 521-529
        • Mergny J.L.
        • Riou J.F.
        • Mailliet P.
        • Teulade-Fichou M.P.
        • Gilson E.
        Natural and pharmacological regulation of telomerase.
        Nucleic Acids Res. 2002; 30: 839-865
        • Biroccio A.
        • Leonetti C.
        Telomerase as a new target for the treatment of hormone-refractory prostate cancer.
        Endocr Relat Cancer. 2004; 11: 407-421
        • Leonetti C.
        • Amodei S.
        • D’Angelo C.
        • et al.
        Biological activity of the G-quadruplex ligand RHPS4 (3,11-difluoro-6,8,13-trimethyl-8 H-quino[4,3,2-kl]acridinium methosulfate) is associated with telomere capping alteration.
        Mol Pharmacol. 2004; 66: 1138-1146
        • Duan W.
        • Rangan A.
        • Vankayalapati H.
        • et al.
        Design and synthesis of fluoroquinophenoxazines that interact with human telomeric G-quadruplexes and their biological effects.
        Mol Cancer Ther. 2001; 1: 103-120
        • Zaug A.J.
        • Podell E.R.
        • Cech T.R.
        Human POT1 disrupts telomeric G-quadruplexes allowing telomerase extension in vitro.
        Proc Natl Acad Sci USA. 2005; 102: 10864-10869
        • Griffith J.D.
        • Comeau L.
        • Rosenfield S.
        • et al.
        Mammalian telomeres end in a large duplex loop.
        Cell. 1999; 97: 419-422
        • Broccoli D.
        • Smogorzewska A.
        • Chong L.
        • de Lange T.
        Human telomeres contain two distinct Myb-related proteins, TRF1 and TRF2.
        Nat Genet. 1997; 17: 231-235
        • Bilaud T.
        • Brun C.
        • Ancelin K.
        • Koering C.E.
        • Laroche T.
        • Gilson E.
        Telomeric localization of TRF2, a novel human telobox protein.
        Nat Genet. 1997; 17: 236-239
        • van Steensel B.
        • Smogorzewska A.
        • de Lange T.
        TRF2 protects human telomeres from end-to-end fusions.
        Cell. 1998; 92: 401-413
        • Ancelin K.
        • Brun C.
        • Gilson E.
        Role of the telomeric DNA-binding protein TRF2 in the stability of human chromosome ends.
        BioEssay. 1998; 20: 879-883
        • Karlseder J.
        • Broccoli D.
        • Dai Y.
        • Hardy S.
        • de Lange T.
        p53- and ATM-dependent apoptosis induced by telomeres lacking TRF2.
        Science. 1999; 283: 1321-1325
        • Lechel A.
        • Satyanarayana A.
        • Ju Z.
        • et al.
        The cellular level of telomere dysfunction determines induction of senescence or apoptosis in vivo.
        EMBO Rep. 2005; 6: 275-281
        • Celli G.B.
        • de Lange T.
        DNA processing is not required for ATM-mediated telomere damage response after TRF2 deletion.
        Nat Cell Biol. 2005; 7: 712-718
        • Ancelin K.
        • Brunori M.
        • Bauwens S.
        • et al.
        Targeting assay to study the cis functions of human telomeric proteins: evidence for inhibition of telomerase by TRF1 and for activation of telomere degradation by TRF2.
        Mol Cell Biol. 2002; 22: 3474-3487
        • Karlseder J.
        • Smogorzewska A.
        • de Lange T.
        Senescence induced by altered telomere state, not telomere loss.
        Science. 2002; 295: 2446-2449
        • Wang R.C.
        • Smogorzewska A.
        • de Lange T.
        Homologous recombination generates T-loop-sized deletions at human telomeres.
        Cell. 2004; 119: 355-368
        • d’Adda di Fagagna F.
        • Teo S.H.
        • Jackson S.P.
        Functional links between telomeres and proteins of the DNA-damage response.
        Genes Dev. 2004; 18: 1781-1799
        • Biroccio A.
        • Amodei S.
        • Benassi B.
        • et al.
        Reconstitution of hTERT restores tumorigenicity in melanoma-derived c-Myc low-expressing clones.
        Oncogene. 2002; 21: 3011-3019
        • Biroccio A.
        • Benassi B.
        • Filomeni G.
        • et al.
        Glutathione influences c-Myc-induced apoptosis in M14 human melanoma cells.
        J Biol Chem. 2002; 27: 43763-43770
        • Biroccio A.
        • Gabellini C.
        • Amodei S.
        • et al.
        Telomere dysfunction increases cisplatin and ecteinascidin-743 sensitivity of melanoma cells.
        Mol Pharmcol. 2003; 63: 632-638
        • Leonetti C.
        • D’Agnano I.
        • Lozupone F.
        • et al.
        Antitumor effect of c-myc antisense phosphorothioate oligodeoxynucleotides on human melanoma cells in vitro and in mice.
        J Natl Cancer Inst. 1996; 88: 419-429
        • Livak K.J.
        • Schmittgen T.D.
        Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta CT).
        Methods. 2001; 25: 402-408
        • Chen X.
        • Ko L.J.
        • Jayaraman L.
        • Prives C.
        p53 levels, functional domains, and DNA damage determine the extent of the apoptotic response of tumor cells.
        Genes Dev. 1996; 10: 2438-2451
        • Yang Q.
        • Zheng Y.L.
        • Harris C.C.
        POT1 and TRF2 cooperate to maintain telomeric integrity.
        Mol Cell Biol. 2005; 25: 1070-1080
        • Zhu X.D.
        • Kuster B.
        • Mann M.
        • Petrini J.H.
        • de Lange T.
        Cell-cycle-regulated association of RAD50/MRE11/NBS1 with TRF2 and human telomeres.
        Nat Genet. 2000; 25: 347-352