Advertisement

Mammary stem and progenitor cells: Tumour precursors?

      Abstract

      Several groups have proposed that mammary epithelial cell (MEC) populations, in common with other epithelia, have stem and progenitor sub-populations that are long-lived and provide most of the growth potential during ductal (and perhaps lobuloalveolar) outgrowth. In this review, we describe what is known about normal development, particularly with respect to the growth potential and regenerative capacity of mouse MEC populations. We have developed a theoretical model in order to understand how the activity of the somatic stem/progenitor cell compartment during mammary gland development could affect the demographic of adult MEC populations. This demographic is likely to be key to understanding tumour risk, since long-lived cells provide great advantages in the process of cancer development.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to European Journal of Cancer
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Cairns J.
        Somatic stem cells and the kinetics of mutagenesis and carcinogenesis.
        Proc Natl Acad Sci USA. 2002; 99: 10567-10570
        • Smalley M.
        • Ashworth A.
        Stem cells and breast cancer: a field in transit.
        Nature Rev Cancer. 2003; 3: 832-844
        • Daniel C.W.
        • DeOme K.B.
        • Young J.T.
        • Blair P.B.
        • Falukin L.J.
        The in vivo lifespan of normal and preneoplastic mouse mammary glands: a serial transplantation study.
        Proc Natl Acad Sci USA. 1968; 61: 52-60
        • Daniel C.W.
        • Young L.J.T.
        Lifespan of mouse mammary gland epithelium during serial propagation in vivo: influence of cell division on an aging process.
        Exp Cell Res. 1971; 65: 27-32
        • Kordon E.C.
        • Smith G.H.
        An entire functional mammary gland may comprise the progeny from a single cell.
        Development. 1998; 125: 1921-1930
        • Daniel C.W.
        Finite growth span of mouse mammary gland serially propagated in vivo.
        Experientia. 1973; 29: 1422-1424
        • Young L.J.
        • Medina D.
        • Deome K.B.
        • Daniel C.W.
        The influence of host and tissue age on life span and growth rate of serially transplanted mouse mammary gland.
        Exp Gerontol. 1971; 6: 49
        • Welm B.E.
        • Tepera S.B.
        • Venezia T.
        • Graubert T.A.
        • Rosen J.M.
        • Goodell M.A.
        Sca-1(pos) cells in the mouse mammary gland represent an enriched progenitor cell population.
        Dev Biol. 2002; 245: 42-56
        • Alvi A.
        • Clayton H.
        • Joshi C.
        • et al.
        Functional and molecular characterisation of mammary side population cells.
        Breast Cancer Res. 2002; 5: R1-R8
        • Dontu G.
        • Abdallah W.M.
        • Foley J.M.
        • et al.
        In vitro propagation and transriptional profiling of human mammary stem/progenitor cells.
        Genes Dev. 2003; 17: 1253-1270
      1. Clarke RB, Spence K, Anderson E, Howell A, Okano H, Potten CS. A putative human breast stem cell population is enriched for steroid receptor-positive cells. Dev Biol [in press].

        • Clarke R.B.
        • Spence K.
        • Anderson E.
        • Howell A.
        • Okano H.
        • Potten C.S.
        A putative human breast stem cell population is enriched for steroid receptor-positive cells.
        Dev Biol. 2005; 277: 443-456
        • Liu Y.
        • McDermott S.P.
        • Khwaja S.S.
        • Alexander C.M.
        The transforming ability of Wnt effectors correlates with their ability to induce the accumulation of mammary progenitor cells.
        Proc Natl Acad Sci USA. 2004; 101: 4158-4163
      2. Stingl J, Eirew P, Ricketson I, et al. Purification and unique properties of mammary epithelial stem cells. Nature 2006, epub 10.1038.

        • Shackleton M.
        • Vaillant F.
        • Simpson K.J.
        • et al.
        Generation of a functional mammary gland from a single stem cell.
        Nature. 2006; 439: 84-88
        • Zeps N.
        • Dawkins H.J.
        • Papadimitriou J.M.
        • Redmond S.L.
        • Walters M.I.
        Detection of a population of long-lived cells in mammary epithelium of the mouse.
        Cell Tissue Res. 1996; 286: 525-536
        • Potten C.S.
        • Owen G.
        • Booth D.
        Intestinal stem cells protect their genome by selective segregation of template DNA strands.
        J Cell Sci. 2002; 115: 2381-2388
        • Smith G.H.
        Label-retaining epithelial cells in mouse mammary gland divide asymmetrically and retain their template DNA strands.
        Development. 2005; 132: 681-687
        • Sakakura T.
        Mammary Embryogenesis.
        in: Neville M.C. Daniel C.W. the Mammary Gland. Plenum, New York1987: 37-66
        • Veltmaat J.M.
        • Mailleux A.A.
        • Thiery J.P.
        • Bellusci S.
        Mouse embryonic mammogenesis as a modelfor the molecular regulation of pattern formation.
        Differentiation. 2003; 71: 1-17
        • Daniel C.W.
        • Silberstein G.B.
        Postnatal development of the rodent mammary gland.
        in: Neville M.C. Daniel C.W. The Mammary Gland. Plenum Press, New York1987
        • Naylor M.J.
        • Ormandy C.J.
        Mouse strain-specific patterns of mammary epithelial ductal side branching are elicited by stromal factors.
        Dev Dyn. 2002; 225: 100-105
        • Dunbar M.E.
        • Young P.
        • Zhang J.P.
        • et al.
        Stromal cells are critical targets in the regulation of mammary ductal morphogenesis by parathryroid hormone-related protein.
        Dev Biol. 1998; 203: 75-89
        • Andl T.
        • Reddy S.T.
        • Gaddapara T.
        • Millar S.E.
        WNT signals are required for the initiation of hair follicle development.
        Dev Cell. 2002; 2: 643-653
        • Chu E.
        • Hens J.
        • Andl T.
        • et al.
        Canonical WNT signaling promotes mammary placode development and is essential for initiation of mammary gland morphogenesis.
        Development. 2004; 131: 4819-4829
        • Hogg N.A.S.
        • Harrison C.J.
        • Tickle C.
        Lumen formation in the developing mouse mammary gland.
        J Embryol Exp Morph. 1983; 73: 39-57
        • Humphreys R.C.
        • Krajewska M.
        • Krnacik S.
        • et al.
        Apoptosis in the terminal endbud of the murine mammary gland: a mechanism of ductal morphogenesis.
        Development. 1996; 122: 4013-4022
        • Williams J.M.
        • Daniel C.W.
        Mammary ductal elongation: differentiation of myoepithelium and basal lamina during branching morphogenesis.
        Dev Biol. 1983; 97: 274-290
        • Bocchinfuso W.P.
        • Korach K.S.
        Mammary gland development and tumorigenesis in estrogen receptor knockout mice.
        J Mammary Gland Biol Neoplasia. 1997; 2: 323-334
        • Hewitt S.C.
        • Harrell J.C.
        • Korach K.S.
        Lessons in estrogen biology from knockout and transgenic animals.
        Annu Rev Physiol. 2005; 67: 285-308
        • Mueller S.O.
        • Clark J.A.
        • Myers P.H.
        • Korach K.S.
        Mammary gland development in adult mice requires epithelial and stromal estrogen receptor alpha.
        Endocrinology. 2002; 143: 2357-2365
        • Shymala G.
        • Chou Y.-.C.
        • Louie S.G.
        • Guzman R.C.
        • Smith G.H.
        • Nandi S.
        Cellular expression of estrogen and progesterone receptors in mammary glands: regulation by hormones, development and aging.
        J Steroid Biochem Mol Biol. 2002; 80: 137-148
        • Cunha G.R.
        • Cooke P.S.
        • Kurita T.
        Role of stromal-epithelial interactions in hormonal responses.
        Arch Histol Cytol. 2004; 67: 417-434
        • Cunha G.R.
        • Young P.
        • Hom Y.K.
        • Cooke P.S.
        • Taylor J.A.
        • Lubahn D.B.
        Elucidation of a role for stromal steroid hormone receptors in mammary gland growth and development using tissue recombinants.
        J Mammary Gland Biol Neoplasia. 1997; 2: 393-402
        • Clarke R.B.
        Steroid receptors and proliferation in the human breast.
        Steroids. 2003; 68: 789-794
        • Lydon J.P.
        • Sivaraman L.
        • Conneely O.M.
        A reappraisal of progesterone action in the mammary gland.
        J Mammary Gland Biol Neoplasia. 2000; 5: 325-338
        • Rosen J.M.
        Hormone receptor patterning plays a critical role in normal lobuloalveolar development and breast cancer progression.
        Breast Dis. 2003; 18: 3-9
        • Dontu G.
        • El-Ashry D.
        • Wicha M.S.
        Breast cancer, stem/progenitor cells and the estrogen receptor.
        Trends Endocrinol Metab. 2004; 15: 193-197
      3. Paguirigan A, Alexander CM, Beebe DJ. A mathematical model for predicting murine mammary epithelial cell population demographics during development and neoplasia. J Theor Biol [in press].

        • Calvert R.
        • Pothier P.
        Migration of fetal intestinal intervillous cells in neonatal mice.
        Anat Rec. 1990; 227: 199-206
        • Schmidt G.H.
        • Winton D.J.
        • Ponder B.A.
        Development of the pattern of cell renewal in the crypt-villus unit of chimaeric mouse small intestine.
        Development. 1988; 103: 785-790
        • Korinek V.
        • Barker N.
        • Moerer P.
        • et al.
        Depletion of epithelial stem-cell compartments in the small intestine of mice lacking Tcf-4.
        Nature Genetics. 1998; 19: 379-383
        • Reya T.
        • Clevers H.
        Wnt signalling in stem cells and cancer.
        Nature. 2005; : 843-850
        • van de Wetering M.
        • Sancho E.
        • Verweij C.
        • et al.
        The beta-catenin/TCF4 complex imposes a crypt progenitor phenotype on colorectal cancer cells.
        Cell. 2002; 111: 241-250
        • Faulkin L.J.J.
        • DeOme K.B.
        Regulation of growth and spacing of gland elements in the mammary fat pad of the C3H mouse.
        J Natl Cancer Inst. 1960; 24: 953-969
        • Neville M.C.
        • Medina D.
        • Monks J.
        • Hovey R.C.
        The mammary fat pad.
        J Mamm Gland Biol Neopl. 1998; 3: 109-116
        • Yant J.
        • Gusterson B.
        • Kamalati T.
        Induction of strain-specific mouse mammary gland ductal architecture.
        The Breast. 1998; 7: 269-272
        • Daniel C.W.
        • Robinson S.
        • Silberstein G.B.
        The role of TGF-b in patterning and growth of the mammary ductal tree.
        J Mamm Gl Biol Neo. 1996; 1: 331-341
        • Boman B.
        • Fields J.
        • Bonham-Carter O.
        • Runquist O.
        Computer modeling implicates stem cell overproduction in colon cancer initiation.
        Cancer Res. 2001; 61: 10567-10570
        • Edelstein-Keshet L.
        • Israel A.
        • Landsorp P.
        Modelling perspectives on aging: can mathematics help us stay young?.
        J Theor Biol. 2001; 213: 509-525
        • Ostby I.
        • Rusten L.S.
        • Kvalheim G.
        • Grottum P.
        A mathematical model for reconstitution of granulopoiesis afer high dose chemotherapy with autologous stem cell transplantation.
        J Math Biol. 2003; 47: 101-136
        • Pinsky P.F.
        A multi-stage model of adenoma development.
        J Theor Biol. 2000; 207: 129-143
        • Kenney N.J.
        • Smith G.H.
        • Lawrence E.J.C.B.
        • Salomon D.S.
        Identification of stem cell units in the terminal end bud and duct of the mouse mammary gland.
        J Biomed Biotech. 2001; 1: 133-143
        • Braun K.M.
        • Niemann C.
        • Jensen U.B.
        • Sundberg J.P.
        • Silva-Vargas V.
        • Watt F.M.
        Manipulation of stem cell proliferation and lineage commitment: visualisation of label-retaining cells in whole mounts of mouse epidermis.
        Development. 2003; 130: 5241-5255
        • Owens D.M.
        • Watt F.M.
        Contribution of stem cells and differentiated cells to epidermal tumours.
        Nature Rev Cancer. 2003; 3: 444-451
        • Tumbar T.
        • Guasch G.
        • Greco V.
        • et al.
        Defining the epithelial stem cell niche in skin.
        Science. 2004; 303: 359-363
        • de Haan G.
        • Weersing E.
        • Dontje B.
        • van Os R.
        • Bystrykh L.V.
        • Vellenga E.G.M.
        In vitro generation of long-term repopulating hematopoietic stem cells by fibroblast growth factor-1.
        Dev Cell. 2003; 4: 241-251
        • Morrison S.J.
        • Qian D.
        • Jerabek L.
        • et al.
        A genetic determinant that specifically regulates the frequency of hematopoietic stem cells.
        J Immunol. 2002; 168: 635-642
        • Muller-Sieburg C.E.
        • Riblet R.
        Genetic control of the frequency of hematopoietic stem cells in mice: Mapping of a candidate locus to chromosome 1.
        J Exp Med. 1996; 183: 1141-1150
        • Domen J.
        • Cheshier S.H.
        • Weissman I.L.
        The role of apoptosis in the regulation of hematopoietic stem cells: overexpression of BCL-2 increases both their number and repopulation potential.
        J Exp Med. 2000; 191: 253-263
        • Popova N.V.
        • Suleimanian N.E.
        • Stepanova E.A.
        • Teti K.A.
        • Wu K.Q.
        • Morris R.J.
        Independent inheritance of genes regulating two subpopulations of mouse clonogenic keratinocyte stem cells.
        J Inv Derm Symp Proc. 2004; 9: 253-260
        • Morris R.J.
        • Tacker K.C.
        • Fischer S.M.
        • Slaga T.J.
        Quantitation of primary in vitro clonogenic keratinocytes from normal adult murine epidermis following initiation and during promotion of epidermal tumors.
        Cancer Res. 1988; 48: 6285-6290
        • Nagase H.
        • Bryson S.
        • Cordell H.
        • Kemp C.
        • Fee F.
        • Balmain A.
        Distinct genetic loci control development of benign and malignant skin tumors in mice.
        Nature Gen. 1995; 10: 424-429
        • Al-Hajj M.
        • Wicha M.S.
        • Benito-Hernandez A.
        • Morrison S.J.
        • Clarke M.F.
        Prospective identification of tumorigenic breast cancer cells.
        Proc Natl Acad Sci USA. 2003; 100: 3983-3988
        • Singh S.K.
        • Hawkins C.
        • Clarke I.D.
        • et al.
        Identification of human brain tumour initiating cells.
        Nature. 2004; 432: 396-401
        • Reya T.
        • Morrison S.J.
        • Clarke M.F.
        • Weissman I.L.
        Stem cells, cancer, and cancer stem cells.
        Nature. 2001; 414: 105-111
        • Warner J.K.
        • Wang J.C.
        • Hope K.J.
        • Jin L.
        • Dick J.E.
        Concepts of human leukemic development.
        Oncogene. 2004; 23: 7164-7177
        • Reya T.
        • Duncan A.W.
        • Ailles L.
        • et al.
        A role for Wnt signalling in self-renewal of haematopoietic stem cells.
        Nature. 2003; 423: 409-414
        • Ruiz i Altaba A.
        • Sanchez P.
        • Dahmane N.
        Gli and Hedgehog in cancer: Tumours, embryos and stem cells.
        Nature Rev Cancer. 2002; 2: 361-372
        • Collado M.
        • Gil J.
        • Efeyan A.
        • et al.
        Tumour biology: senescence in premalignant tumours.
        Nature. 2005; 436: 642
        • Sharpless N.E.
        • DePinho R.A.
        Cancer: crime and punishment.
        Nature. 2005; 436: 636-637
        • Rambhatla L.
        • Ram-Mohan S.
        • Cheng J.J.
        • Sherley J.L.
        Immortal DNA strand cosegregation requires p53/IMPDH-dependent asymmetric self-renewal associated with adult stem cells.
        Cancer Res. 2005; 65: 3155-3161
        • Sherley J.L.
        Asymmetric cell kinetics genes: the key to expansion of adult stem cells in culture.
        Sci World J. 2002; 2: 1906-1921
        • Dirks P.B.
        Brain tumor stem cells.
        Biol Blood Marrow Transplant. 2005; 11: 12-13
        • Perou C.
        • Sorlie T.
        • Eisen M.B.
        • et al.
        Molecular portraits of human breast tumors.
        Nature. 2000; 406: 747-752
        • Sorlie T.
        • Perou C.M.
        • Tibshirani R.
        • et al.
        Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications.
        Proc Natl Acad Sci USA. 2001; 98: 10869-10874
        • Sorlie T.
        • Tibshirani R.
        • Parker J.
        • et al.
        Repeated observation of breast tumor subtypes in independent gene expression data sets.
        Proc Natl Acad Sci USA. 2003; 100: 8418-8423
        • Weigelt B.
        • Hu Z.
        • He X.
        • et al.
        Molecular portraits and 70-gene prognosis signature are preserved throughout the metastatic process of breast cancer.
        Cancer Res. 2005; 65: 9155-9158