Advertisement

Neural stem cells as novel cancer therapeutic vehicles

  • Author Footnotes
    1 These authors contributed equally to this work.
    Stephen Yip
    Footnotes
    1 These authors contributed equally to this work.
    Affiliations
    Department of Pathology & Laboratory Medicine, Vancouver General Hospital, University of British Columbia, Vancouver, BC, Canada

    The Burnham Institute, Program in Developmental & Regenerative Cell Biology, 10901 North Torrey Pine Road, La Jolla CA 92037, USA
    Search for articles by this author
  • Author Footnotes
    1 These authors contributed equally to this work.
    Roya Sabetrasekh
    Footnotes
    1 These authors contributed equally to this work.
    Affiliations
    The Burnham Institute, Program in Developmental & Regenerative Cell Biology, 10901 North Torrey Pine Road, La Jolla CA 92037, USA

    Centre for Molecular Biology and Neuroscience, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
    Search for articles by this author
  • Richard L. Sidman
    Affiliations
    Department of Neurology, Harvard Medical School, Harvard Institutes of Medicine, Beth Israel-Deaconess Medical Center, Boston, MA 02115, USA
    Search for articles by this author
  • Evan Y. Snyder
    Correspondence
    Corresponding author. Tel: +1 858 646 3158; fax: +1 858 713 6273.
    Affiliations
    The Burnham Institute, Program in Developmental & Regenerative Cell Biology, 10901 North Torrey Pine Road, La Jolla CA 92037, USA

    Department of Neurology, Harvard Medical School, Harvard Institutes of Medicine, Beth Israel-Deaconess Medical Center, Boston, MA 02115, USA
    Search for articles by this author
  • Author Footnotes
    1 These authors contributed equally to this work.

      Abstract

      The startling resemblance of many of the behaviours of brain tumours to the intrinsic properties of the neural stem/progenitor cell has triggered a recent dual interest in arming stem cells to track and help eradicate tumours and in viewing stem cell biology as somehow integral to the emergence and/or propagation of the neoplasm itself. These aspects are reviewed and discussed here.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to European Journal of Cancer
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Aboody K.S.
        • Brown A.
        • Rainov N.G.
        • et al.
        Neural stem cells display extensive tropism for pathology in adult brain: evidence from intracranial gliomas.
        Proc Natl Acad Sci USA. 2000; 97: 12846-12851
        • Hemmati H.D.
        • Nakano I.
        • Lazareff J.A.
        • et al.
        Cancerous stem cells can arise from pediatric brain tumors.
        Proc Natl Acad Sci USA. 2003; 100: 15178-15183
        • Galli R.
        • Binda E.
        • Orfanelli U.
        • et al.
        Isolation and characterization of tumorigenic, stem-like neural precursors from human glioblastoma.
        Cancer Res. 2004; 64: 7011-7021
        • Singh S.K.
        • Hawkins C.
        • Clarke I.D.
        • et al.
        Identification of human brain tumour initiating cells.
        Nature. 2004; 432: 396-401
        • Singh S.K.
        • Clarke I.D.
        • Terasaki M.
        • et al.
        Identification of a cancer stem cell in human brain.
        Cancer Res. 2003; 63: 5821-5828
        • Yuan X.
        • Curtin J.
        • Xiong Y.
        Isolation of cancer stem cells from adult glioblastoma multiforme.
        Oncogene. 2004; 23: 9392-9400
        • Bachoo R.M.
        • Maher E.A.
        • Ligon K.L.
        • et al.
        Epidermal growth factor receptor and Ink4a/Arf: governing terminal differentiation and transformation stem cell to astrocyte axis.
        Cancer Cell. 2002; 1: 269-277
        • Mischel P.S.
        • Cloughesy T.F.
        • Nelson S.F.
        DNA-microarray analysis of brain cancer: molecular classification for therapy.
        Nat Rev Neurosci. 2004; 5: 782-792
        • Pomeroy S.L.
        • Tamayo P.
        • Gaasenbeek M.
        • et al.
        Prediction of central nervous system embryonal tumour outcome based on gene expression.
        Nature. 2002; 415: 436-442
        • Freije W.A.
        • Castro-Vargas F.F.
        • Fang Z.
        • et al.
        Gene expression profiling of gliomas strongly predicts survival.
        Cancer Res. 2004; 64: 6503-6510
        • Cairncross J.G.
        • Ueki K.
        • Zlatescu M.C.
        • et al.
        Specific genetic predictors of chemotherapeutic response and survival in patients with anaplastic oligodendrogliomas.
        J Natl Cancer Inst. 1998; 90: 1473-1479
        • Hegi M.E.
        • Diserens A.C.
        • Godard S.
        • et al.
        Clinical trial substantiates the predictive value of O-6-methylguanine–methyltransferase promoter methylation in glioblastoma patients treated with temozolomide.
        Clin Cancer Res. 2004; 10: 1871-1874
        • Stupp R.
        • Mason W.P.
        • van den Bent M.J.
        • et al.
        Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma.
        New Engl J Med. 2005; 352: 987-996
        • Glinsky G.V.
        • Berezovska O.
        • Glinskii A.B.
        Microarray analysis identifies a death-from-cancer signature predicting therapy failure in patients with multiple types of cancer.
        J Clin Invest. 2005; 115: 1503-1521
        • Kania G.
        • Corbeil D.
        • Fuchs J.
        • et al.
        Somatic stem cell marker prominin-1/CD133 is expressed in embryonic stem cell-derived progenitors.
        Stem Cells. 2005; 23: 791-804
        • Clarke M.F.
        Neurobiology: at the root of brain cancer.
        Nature. 2004; 432: 281-282
        • Berger F.
        • Gay E.
        • Pelletier L.
        • Tropel P.
        • Wion D.
        Development of gliomas: potential role of asymmetrical cell division of neural stem cells.
        Lancet Oncol. 2004; 5: 511-514
        • Zhu Y.
        • Parada L.F.
        The molecular and genetic basis of neurological tumours.
        Nat Rev Cancer. 2002; 2: 616-626
        • Romer J.T.
        • Kimura H.
        • Magdaleno S.
        • et al.
        Suppression of the Shh pathway using a small molecule inhibitor medulloblastoma in Ptc1(+/−)p53(−/−) mice.
        Cancer Cell. 2004; 6: 229-240
        • Hentschel S.J.
        • Lang F.F.
        Current surgical management of glioblastoma.
        Cancer J. 2003; 9: 113-125
        • Keles G.E.
        • Berger M.S.
        Advances in neurosurgical technique in the current management of brain tumors.
        Semin Oncol. 2004; 31: 659-665
        • Piepmeier J.
        • Baehring J.M.
        Surgical resection for patients with benign primary brain tumors and low grade gliomas.
        J Neurooncol. 2004; 69: 55-65
        • Nelson S.J.
        • Cha S.
        Imaging glioblastoma multiforme.
        Cancer J. 2003; 9: 134-145
        • Oh D.S.
        • Black P.M.
        A low-field intraoperative MRI system for glioma surgery: is it worthwhile.
        Neurosurg Clin N Am. 2005; 16: 135-141
        • Taylor M.D.
        • Bernstein M.
        Awake craniotomy with brain mapping as the routine surgical approach to treating patients with supratentorial intraaxial tumors: a prospective trial of 200 cases.
        J Neurosurg. 1999; 90: 35-41
        • Bernstein M.
        Outpatient craniotomy for brain tumor: a pilot feasibility study in 46 patients.
        Can J Neurol Sci. 2001; 28: 120-124
        • Laws E.R.
        • Parney I.F.
        • Huang W.
        • et al.
        Survival following surgery and prognostic factors for recently diagnosed malignant glioma: data from the Glioma Outcomes Project.
        J Neurosurg. 2003; 99: 467-473
        • Chang S.M.
        • Parney I.F.
        • Huang W.
        • et al.
        Patterns of care for adults with newly diagnosed malignant glioma.
        JAMA. 2005; 293: 557-564
        • DeAngelis L.M.
        Brain tumors.
        New Engl J Med. 2001; 344: 114-123
        • Holland E.C.
        Glioblastoma multiforme: the terminator.
        Proc Natl Acad Sci USA. 2000; 97: 6242-6244
        • Kaye A.H.
        • Laws E.R.
        Historical perspective.
        in: Kaye A.H. Laws E.R. Brain tumors: an encylopedic approach. Churchill Livingstone, New York2001: 3-8
        • Snyder E.Y.
        • Taylor R.M.
        • Wolfe J.H.
        Neural progenitor cell engraftment corrects lysosomal storage throughout the MPS VII mouse brain.
        Nature. 1995; 374: 367-370
        • Yip S.
        • Aboody K.S.
        • Burns M.
        • et al.
        Neural stem cell biology may be well suited for improving brain tumor therapies.
        Cancer J. 2003; 9: 189-204
        • Parker M.A.
        • Anderson J.K.
        • Corliss D.A.
        • et al.
        Expression profile of an operationally-defined neural stem cell clone.
        Exp Neurol. 2005;
        • Renfranz P.J.
        • Cunningham M.G.
        • McKay R.D.
        Region-specific differentiation of the hippocampal stem cell line HiB5 upon implantation into the developing mammalian brain.
        Cell. 1991; 66: 713-729
        • Reynolds B.A.
        • Weiss S.
        Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system.
        Science. 1992; 255: 1707-1710
        • McKay R.
        Stem cells in the central nervous system.
        Science. 1997; 276: 66-71
        • Gage F.H.
        Mammalian neural stem cells.
        Science. 2000; 287: 1433-1438
        • Rosario C.M.
        • Yandava B.D.
        • Kosaras B.
        • Zurakowski D.
        • Sidman R.L.
        • Snyder E.Y.
        Differentiation of engrafted multipotent neural progenitors towards replacement of missing granule neurons in meander tail cerebellum may help determine the locus of mutant gene action.
        Development. 1997; 124: 4213-4224
        • Snyder E.Y.
        • Yoon C.
        • Flax J.D.
        • Macklis J.D.
        Multipotent neural precursors can differentiate toward replacement of neurons undergoing targeted apoptotic degeneration in adult mouse neocortex.
        Proc Natl Acad Sci USA. 1997; 94: 11663-11668
        • Yandava B.D.
        • Billinghurst L.L.
        • Snyder E.Y.
        ‘Global’ cell replacement is feasible via neural stem cell transplantation: evidence from the dysmyelinated shiverer mouse brain.
        Proc Natl Acad Sci USA. 1999; 96: 7029-7034
        • Temple S.
        The development of neural stem cells.
        Nature. 2001; 414: 112-117
        • Ma W.
        • Fitzgerald W.
        • Liu Q.Y.
        • et al.
        CNS stem and progenitor cell differentiation into functional neuronal circuits in three-dimensional collagen gels.
        Exp Neurol. 2004; 190: 276-288
        • Zlomanczuk P.
        • Mrugala M.
        • de la Iglesia H.O.
        • et al.
        Transplanted clonal neural stem-like cells respond to remote photic stimulation following incorporation within the suprachiasmatic nucleus.
        Exp Neurol. 2002; 174: 162-168
        • Taupin P.
        • Gage F.H.
        Adult neurogenesis and neural stem cells of the central nervous system in mammals.
        J Neurosci Res. 2002; 69: 745-749
        • Snyder E.Y.
        • Deitcher D.L.
        • Walsh C.
        • Arnold-Aldea S.
        • Hartwieg E.A.
        • Cepko C.L.
        Multipotent neural cell lines can engraft and participate in development of mouse cerebellum.
        Cell. 1992; 68: 33-51
        • Park K.I.
        • Liu S.
        • Flax J.D.
        • Nissim S.
        • Stieg P.E.
        • Snyder E.Y.
        Transplantation of neural progenitor and stem cells: developmental insights may suggest new therapies for spinal cord and other CNS dysfunction.
        J Neurotrauma. 1999; 16: 675-687
        • Flax J.D.
        • Aurora S.
        • Yang C.
        • et al.
        Engraftable human neural stem cells respond to developmental cues, replace neurons, and express foreign genes.
        Nat Biotechnol. 1998; 16: 1033-1039
        • Ourednik J.
        • Ourednik V.
        • Lynch W.P.
        • Schachner M.
        • Snyder E.Y.
        Neural stem cells display an inherent mechanism for rescuing dysfunctional neurons.
        Nat Biotechnol. 2002; 20: 1103-1110
        • Kim D.E.
        • Schellingerhout D.
        • Ishii K.
        • Shah K.
        • Weissleder R.
        Imaging of stem cell recruitment to ischemic infarcts in a murine model.
        Stroke. 2004; 35: 952-957
        • Martinez-Serrano A.
        • Rubio F.J.
        • Navarro B.
        • Bueno C.
        • Villa A.
        Human neural stem and progenitor cells: in vitro and in vivo properties, and potential for gene therapy and cell replacement in the CNS.
        Curr Gene Ther. 2001; 1: 279-299
        • Lindvall O.
        • Kokaia Z.
        • Martinez-Serrano A.
        Stem cell therapy for human neurodegenerative disorders-how to make it work.
        Nat Med. 2004; 10: S42-S50
        • Uchida K.
        • Momiyama T.
        • Okano H.
        • et al.
        Potential functional neural repair with grafted neural stem cells of early embryonic neuroepithelial origin.
        Neurosci Res. 2005; 52: 276-286
        • Gottlieb D.I.
        Large-scale sources of neural stem cells.
        Annu Rev Neurosci. 2002; 25: 381-407
        • Reubinoff B.E.
        • Itsykson P.
        • Turetsky T.
        • et al.
        Neural progenitors from human embryonic stem cells.
        Nat Biotechnol. 2001; 19: 1134-1140
        • Chandran S.
        • Compston A.
        Neural stem cells as a potential source of oligodendrocytes for myelin repair.
        J Neurol Sci. 2005;
        • Tabar V.
        • Panagiotakos G.
        • Greenberg E.D.
        • et al.
        Migration and differentiation of neural precursors derived from human embryonic stem cells in the rat brain.
        Nat Biotechnol. 2005; 23: 601-606
        • Klein C.
        • Fishell G.
        Neural stem cells: progenitors or panacea?.
        Dev Neurosci. 2004; 26: 82-92
        • Palmer T.D.
        • Schwartz P.H.
        • Taupin P.
        • Kaspar B.
        • Stein S.A.
        • Gage F.H.
        Progenitor cells from human brain after death.
        Nature. 2001; 411: 42-43
        • Li S.
        • Tokuyama T.
        • Yamamoto J.
        • Koide M.
        • Yokota N.
        • Namba H.
        Bystander effect-mediated gene therapy of gliomas using genetically engineered neural stem cells.
        Cancer Gene Ther. 2005;
        • Shah K.
        • Hsich G.
        • Breakefield X.O.
        Neural precursor cells and their role in neuro-oncology.
        Dev Neurosci. 2004; 26: 118-130
        • Brower V.
        Search and destroy: recent research exploits adult stem cells’ attraction to cancer.
        J Natl Cancer Inst. 2005; 97: 414-416
        • Yip S.
        • Sidman R.L.
        • Snyder E.
        Stem cells for targeting CNS malignancy.
        in: Principles of molecular neurosurgery. Karger Publishers, Basel2005: 624-644
        • Zandonella C.
        The first wave.
        Nature. 2005; 435: 877-878
        • Benedetti S.
        • Pirola B.
        • Pollo B.
        • et al.
        Gene therapy of experimental brain tumors using neural progenitor.
        Nat Med. 2000; 6: 447-450
        • Ehtesham M.
        • Kabos P.
        • Kabosova A.
        • Neuman T.
        • Black K.L.
        • Yu J.S.
        The use of interleukin 12-secreting neural stem cells for the treatment of intracranial glioma.
        Cancer Res. 2002; 62: 5657-5663
        • Ehtesham M.
        • Kabos P.
        • Gutierrez M.A.
        • et al.
        Induction of glioblastoma apoptosis using neural stem cell-mediated delivery of tumor necrosis factor-related apoptosis-inducing ligand.
        Cancer Res. 2002; 62: 7170-7174
        • Barresi V.
        • Belluardo N.
        • Sipione S.
        • Mudo G.
        • Cattaneo E.
        • Condorelli D.F.
        Transplantation of prodrug-converting neural tumor therapy.
        Cancer Gene Ther. 2003; 10: 396-402
        • Uhl M.
        • Weiler M.
        • Wick W.
        • Jacobs A.H.
        • Weller M.
        • Herrlinger U.
        Migratory neural stem cells for improved thymidine kinase-based gene therapy of malignant gliomas.
        Biochem Biophys Res Commun. 2005; 328: 125-129
        • Li S.
        • Tokuyama T.
        • Yamamoto J.
        • Koide M.
        • Yokota N.
        • Namba H.
        Bystander effect-mediated gene therapy of gliomas using genetically engineered neural stem cells.
        Cancer Gene Ther. 2005; 12: 600-607
        • Eriksson P.S.
        • Perfilieva E.
        • Bjork-Eriksson T.
        • et al.
        Neurogenesis in the adult human hippocampus.
        Nat Med. 1998; 4: 1313-1317
        • Kukekov V.G.
        • Laywell E.D.
        • Suslov O.
        • et al.
        Multipotent stem/progenitor cells with similar properties arise from two neurogenic regions of adult human brain.
        Exp Neurol. 1999; 156: 333-344
        • Antel J.P.
        • Nalbantoglu J.
        • Olivier A.
        Neuronal progenitors-learning from the hippocampus.
        Nat Med. 2000; 6: 249-250
        • Nunes M.C.
        • Roy N.S.
        • Keyoung H.M.
        • et al.
        Identification and isolation of multipotential from the subcortical white matter of the adult.
        Nat Med. 2003; 9: 439-447
        • Sanai N.
        • Tramontin A.D.
        • Quinones-Hinojosa A.
        • et al.
        Unique astrocyte ribbon in adult human brain contains neural stem cells but lacks chain migration.
        Nature. 2004; 427: 740-744
        • Fomchenko E.I.
        • Holland E.C.
        Stem cells and brain cancer.
        Exp Cell Res. 2005; 306: 323-329
        • Glass R.
        • Synowitz M.
        • Kronenberg G.
        • et al.
        Glioblastoma-induced attraction of endogenous neural precursor cells is associated with improved survival.
        J Neurosci. 2005; 25: 2637-2646
        • Weinstein D.E.
        • Shelanski M.L.
        • Liem R.K.
        C17, a retrovirally immortalized neuronal cell line, inhibits the proliferation of astrocytes and astrocytoma cells by a contact-mechanism.
        Glia. 1990; 3: 130-139
        • Staflin K.
        • Honeth G.
        • Kalliomaki S.
        • Kjellman C.
        • Edvardsen K.
        • Lindvall M.
        Neural progenitor cell lines inhibit rat tumor growth in vivo.
        Cancer Res. 2004; 64: 5347-5354
        • Lacorazza H.D.
        • Flax J.D.
        • Snyder E.Y.
        • Jendoubi M.
        Expression of human beta-hexosaminidase alpha-subunit gene (the gene defect of Tay-Sachs disease) in mouse brains upon engraftment of transduced progenitor cells.
        Nat Med. 1996; 2: 424-429
        • Snyder E.Y.
        • Park K.I.
        • Flax J.D.
        • et al.
        Potential of neural ‘stem-like’ cells for gene therapy and repair of the degenerating central nervous system.
        Adv Neurol. 1997; 72: 121-132
        • Riess P.
        • Zhang C.
        • Saatman K.E.
        • et al.
        Transplanted neural stem cells survive, differentiate, and improve neurological motor function after experimental traumatic brain injury.
        Neurosurgery. 2002; 51 ([discussion 1052–4]): 1043-1052
        • Scheel J.R.
        • Ray J.
        • Gage F.H.
        • Barlow C.
        Quantitative analysis of gene expression in living adult neural stem cells by gene trapping.
        Nat Methods. 2005; 2: 363-370
        • Erlandsson A.
        • Larsson J.
        • Forsberg-Nilsson K.
        Stem cell factor is a chemoattractant and a survival factor for CNS cells.
        Exp Cell Res. 2004; 301: 201-210
        • Widera D.
        • Holtkamp W.
        • Entschladen F.
        • et al.
        MCP-1 induces migration of adult neural stem cells.
        Eur J Cell Biol. 2004; 83: 381-387
        • Sun L.
        • Lee J.
        • Fine H.A.
        Neuronally expressed stem cell factor induces neural stem cell migration to areas of brain injury.
        J Clin Invest. 2004; 113: 1364-1374
        • Werbowetski T.
        • Bjerkvig R.
        • Del Maestro R.F.
        Evidence for a secreted chemorepellent that directs glioma cell invasion.
        J Neurobiol. 2004; 60: 71-88
        • Gerard C.
        • Rollins B.J.
        Chemokines and disease.
        Nat Immunol. 2001; 2: 108-115
        • Imitola J.
        • Raddassi K.
        • Park K.I.
        • et al.
        Directed migration of neural stem cells to sites of CNS injury by the stromal cell-derived factor 1alpha/CXC chemokine receptor 4 pathway.
        Proc Natl Acad Sci USA. 2004; 101: 18117-18122
        • Lazarini F.
        • Tham T.N.
        • Casanova P.
        • Arenzana-Seisdedos F.
        • Dubois-Dalcq M.
        Role of the alpha-chemokine stromal cell-derived factor (SDF-1) in the developing and mature central nervous system.
        Glia. 2003; 42: 139-148
        • Rempel S.A.
        • Dudas S.
        • Ge S.
        • Gutierrez J.A.
        Identification and localization of the cytokine SDF1 and its receptor, CXC chemokine receptor 4, to regions of necrosis and angiogenesis in human glioblastoma.
        Clin Cancer Res. 2000; 6: 102-111
        • Zhou Y.
        • Larsen P.H.
        • Hao C.
        • Yong V.W.
        CXCR4 is a major chemokine receptor on glioma cells and mediates their survival.
        J Biol Chem. 2002; 277: 49481-49487
        • Rubin J.B.
        • Kung A.L.
        • Klein R.S.
        • et al.
        A small-molecule antagonist of CXCR4 inhibits intracranial growth of primary brain tumors.
        Proc Natl Acad Sci USA. 2003; 100: 13513-13518
        • Allport J.R.
        • Shinde Patil V.R.
        • Weissleder R.
        Murine neuronal progenitor cells are preferentially recruited to tumor vasculature via alpha4-integrin and SDF-1alpha-dependent mechanisms.
        Cancer Biol Ther. 2004; 3: 838-844
        • Fears C.Y.
        • Sontheimer H.W.
        • Bullard D.C.
        • Gladson C.L.
        Could labeled neuronal progenitor cells be used to target glioma tumor endothelium?.
        Cancer Biol Ther. 2004; 3: 845-846
        • Ehtesham M.
        • Yuan X.
        • Kabos P.
        • et al.
        Glioma tropic neural stem cells consist of astrocytic precursors and their migratory capacity is mediated by CXCR4.
        Neoplasia. 2004; 6: 287-293
        • Tabatabai G.
        • Bahr O.
        • Mohle R.
        • et al.
        Lessons from the bone marrow: how malignant glioma cells attract adult haematopoietic progenitor cells.
        Brain. 2005; 128: 2200-2211
        • Lee B.C.
        • Lee T.H.
        • Avraham S.
        • Avraham H.K.
        Involvement of the chemokine receptor CXCR4 and its ligand stromal cell-derived factor 1alpha in breast cancer cell migration through human brain microvascular endothelial cells.
        Mol Cancer Res. 2004; 2: 327-338
        • Pluchino S.
        • Zanotti L.
        • Rossi B.
        • et al.
        Neurosphere-derived multipotent precursors promote neuroprotection by an immunomodulatory mechanism.
        Nature. 2005; 436: 266-271
        • Liang Z.
        • Wu T.
        • Lou H.
        • et al.
        Inhibition of breast cancer metastasis by selective synthetic polypeptide against CXCR4.
        Cancer Res. 2004; 64: 4302-4308
        • Schmidt N.O.
        • Przylecki W.
        • Yang W.
        • et al.
        Brain tumor tropism of transplanted human neural stem cells is induced by vascular endothelial growth factor.
        Neoplasia. 2005; 7: 623-629
        • Kaur B.
        • Tan C.
        • Brat D.J.
        • Post D.E.
        • Van Meir E.G.
        Genetic and hypoxic regulation of angiogenesis in gliomas.
        J Neurooncol. 2004; 70: 229-243
        • Feldkamp M.M.
        • Lau N.
        • Guha A.
        Signal transduction pathways and their relevance in human astrocytomas.
        J Neurooncol. 1997; 35: 223-248
        • Dunn I.F.
        • Heese O.
        • Black P.M.
        Growth factors in glioma angiogenesis: FGFs, PDGF, EGF, and TGFs.
        J Neurooncol. 2000; 50: 121-137
        • Chicoine M.R.
        • Silbergeld D.L.
        Mitogens as motogens.
        J Neurooncol. 1997; 35: 249-257
        • Boockvar J.A.
        • Kapitonov D.
        • Kapoor G.
        • et al.
        Constitutive EGFR signaling confers a motile phenotype to neural stem cells.
        Mol Cell Neurosci. 2003; 24: 1116-1130
        • Lefranc F.
        • Brotchi J.
        • Kiss R.
        Possible future issues in the treatment of glioblastomas: special emphasis on cell migration and the resistance of migrating glioblastoma cells to apoptosis.
        J Clin Oncol. 2005; 23: 2411-2422
        • Tatenhorst L.
        • Puttmann S.
        • Senner V.
        • Paulus W.
        Genes associated with fast glioma cell migration in vitro and in vivo.
        Brain Pathol. 2005; 15: 46-54
        • Chiocca E.A.
        • Aghi M.
        • Fulci G.
        Viral therapy for glioblastoma.
        Cancer J. 2003; 9: 167-179
        • Chiocca E.A.
        • Broaddus W.C.
        • Gillies G.T.
        • Visted T.
        • Lamfers M.L.
        Neurosurgical delivery of chemotherapeutics, targeted toxins, genetic viral therapies in neuro-oncology.
        J Neurooncol. 2004; 69: 101-117
        • Gomez-Manzano C.
        • Yung W.K.
        • Alemany R.
        • Fueyo J.
        Genetically modified adenoviruses against gliomas: from bench to bedside.
        Neurology. 2004; 63: 418-426
        • Kew Y.
        • Levin V.A.
        Advances in gene therapy and immunotherapy for brain tumors.
        Curr Opin Neurol. 2003; 16: 665-670
        • Ma H.I.
        • Lin S.Z.
        • Chiang Y.H.
        • et al.
        Intratumoral gene therapy of malignant brain tumor in a rat model with angiostatin delivered by adeno-associated viral (AAV) vector.
        Gene Ther. 2002; 9: 2-11
        • Kurihara H.
        • Zama A.
        • Tamura M.
        • Takeda J.
        • Sasaki T.
        • Takeuchi T.
        Glioma/glioblastoma-specific adenoviral gene expression using the nestin gene regulator.
        Gene Ther. 2000; 7: 686-693
        • Fueyo J.
        • Alemany R.
        • Gomez-Manzano C.
        • et al.
        Preclinical characterization of the antiglioma activity of a tropism-enhanced adenovirus targeted to the retinoblastoma pathway.
        J Natl Cancer Inst. 2003; 95: 652-660
        • Stojdl D.F.
        • Lichty B.D.
        • tenOever B.R.
        • Paterson J.M.
        • Power A.T.
        VSV strains with defects in their ability to shutdown innate immunity are potent systemic anti-cancer agents.
        Cancer Cell. 2003; 4: 263-275
        • Herrlinger U.
        • Woiciechowski C.
        • Sena-Esteves M.
        • et al.
        Neural precursor cells for delivery of replication-conditional HSV-1 vectors to intracerebral gliomas.
        Mol Ther. 2000; 1: 347-357
        • Manome Y.
        • Wen P.Y.
        • Dong Y.
        • et al.
        Viral vector transduction of the human deoxycytidine kinase cDNA sensitizes glioma cells to the cytotoxic effects of cytosine arabinoside in vitro and in vivo.
        Nat Med. 1996; 2: 567-573
        • Lynch W.P.
        • Sharpe A.H.
        • Snyder E.Y.
        Neural stem cells as engraftable packaging lines can mediate gene delivery to microglia: evidence from studying retroviral env-related neurodegeneration.
        J Virol. 1999; 73: 6841-6851
        • Arnhold S.
        • Hilgers M.
        • Lenartz D.
        • et al.
        Neural precursor cells as carriers for a gene therapeutical approach in tumor therapy.
        Cell Transplant. 2003; 12: 827-837
        • Jean W.C.
        • Spellman S.R.
        • Wallenfriedman M.A.
        • Hall W.A.
        • Low W.C.
        Interleukin-12-based immunotherapy against rat 9L glioma.
        Neurosurgery. 1998; 42 ([discussion 856–7]): 850-856
        • Ehtesham M.
        • Samoto K.
        • Kabos P.
        • et al.
        Treatment of intracranial glioma with in situ interferon-gamma and necrosis factor-alpha gene transfer.
        Cancer Gene Ther. 2002; 9: 925-934
        • Rhines L.D.
        • Sampath P.
        • DiMeco F.
        • et al.
        Local immunotherapy with interleukin-2 delivered from polymer microspheres combined with interstitial chemotherapy: a treatment for experimental malignant glioma.
        Neurosurgery. 2003; 52 ([discussion 879–80]): 872-879
        • Eklund J.W.
        • Kuzel T.M.
        A review of recent findings involving interleukin-2-based cancer therapy.
        Curr Opin Oncol. 2004; 16: 542-546
        • Smyth M.J.
        • Cretney E.
        • Kershaw M.H.
        • Hayakawa Y.
        Cytokines in cancer immunity and immunotherapy.
        Immunol Rev. 2004; 202: 275-293
        • Yang S.Y.
        • Liu H.
        • Zhang J.N.
        Gene therapy of rat malignant gliomas using neural stem cells expressing IL-12.
        DNA Cell Biol. 2004; 23: 381-389
        • Walczak H.
        • Miller R.E.
        • Ariail K.
        • et al.
        Tumoricidal activity of tumor necrosis factor-related apoptosis-ligand in vivo.
        Nat Med. 1999; 5: 157-163
      1. Kim I, Kim H, Im S, Snyder EY, Park K. Induction of intracranial glioblastoma apoptosis by transplantation of TRAIL (tumor necrosis factor-related apoptosis-inducing ligand) expressing human neural stem cells (NSCs). In: Annual meeting of society of neuroscience. San Diego; 2004.

        • Leon S.P.
        • Folkerth R.D.
        • Black P.M.
        Microvessel density is a prognostic indicator for patients with astroglial brain tumors.
        Cancer. 1996; 77: 362-372
        • Brem S.
        • Tsanaclis A.M.
        • Gately S.
        • Gross J.L.
        • Herblin W.F.
        Immunolocalization of basic fibroblast growth factor to the microvasculature of human brain tumors.
        Cancer. 1992; 70: 2673-2680
        • Chan A.S.
        • Leung S.Y.
        • Wong M.P.
        • et al.
        Expression of vascular endothelial growth factor and its receptors in the anaplastic progression of astrocytoma, oligodendroglioma, and ependymoma.
        Am J Surg Pathol. 1998; 22: 816-826
        • Daumas-Duport C.
        • Scheithauer B.
        • O’Fallon J.
        • Kelly P.
        Grading of astrocytomas. A simple and reproducible method.
        Cancer. 1988; 62: 2152-2165
        • Tanaka T.
        • Manome Y.
        • Wen P.
        • Kufe D.W.
        • Fine H.A.
        Viral vector-mediated transduction of a modified platelet factor 4 cDNA inhibits angiogenesis and tumor growth.
        Nat Med. 1997; 3: 437-442
        • Bjerkvig R.
        • Read T.A.
        • Vajkoczy P.
        • et al.
        Cell therapy using encapsulated cells producing endostatin.
        Acta Neurochir Suppl. 2003; 88: 137-141
        • Studeny M.
        • Marini F.C.
        • Dembinski J.L.
        • et al.
        Mesenchymal stem cells: potential precursors for tumor stroma and targeted-delivery vehicles for anticancer agents.
        J Natl Cancer Inst. 2004; 96: 1593-1603
        • Nakamizo A.
        • Marini F.
        • Amano T.
        • et al.
        Human bone marrow-derived mesenchymal stem cells in the treatment of gliomas.
        Cancer Res. 2005; 65: 3307-3318
        • Nakamura K.
        • Ito Y.
        • Kawano Y.
        • et al.
        Antitumor effect of genetically engineered mesenchymal stem cells in a rat glioma model.
        Gene Ther. 2004; 11: 1155-1164
        • Weissleder R.
        • Ntziachristos V.
        Shedding light onto live molecular targets.
        Nat Med. 2003; 9: 123-128
      2. Kim DE, Tsuji K, Kim YR, et al. Real-time bioluminescent imaging of neural stem cell transplant survival in the brains of mice: assessing the impact of immunity and ischemia. Radiology 2006 [in press].

        • Tang Y.
        • Shah K.
        • Messerli S.M.
        • Snyder E.
        • Breakefield X.
        • Weissleder R.
        In vivo tracking of neural progenitor cell.
        Hum Gene Ther. 2003; 14: 1247-1254
        • Shah K.
        • Bureau E.
        • Kim D.E.
        • et al.
        Glioma therapy and real-time imaging of neural precursor cell migration and tumor regression.
        Ann Neurol. 2005; 57: 34-41
        • Lewin M.
        • Carlesso N.
        • Tung C.H.
        • et al.
        Tat peptide-derivatized magnetic nanoparticles allow in recovery of progenitor cells.
        Nat Biotechnol. 2000; 18: 410-414
        • Zhang Z.
        • Jiang Q.
        • Jiang F.
        • et al.
        In vivo magnetic resonance imaging tracks adult neural progenitor cell targeting of brain tumor.
        Neuroimage. 2004; 23: 281-287
        • Anderson S.A.
        • Glod J.
        • Arbab A.S.
        • et al.
        Noninvasive MR imaging of magnetically labeled stem cells to directly identify neovasculature in a glioma model.
        Blood. 2005; 105: 420-425
        • Daldrup-Link H.E.
        • Rudelius M.
        • Piontek G.
        • et al.
        Migration of iron oxide-labeled human hematopoietic progenitor cells in a mouse model: in vivo monitoring with 1.5-T MR imaging equipment.
        Radiology. 2005; 234: 197-205
        • Jaiswal J.K.
        • Simon S.M.
        Potentials and pitfalls of fluorescent quantum dots for biological imaging.
        Trends Cell Biol. 2004; 14: 497-504
        • Gao X.
        • Cui Y.
        • Levenson R.M.
        • Chung L.W.
        • Nie S.
        In vivo cancer targeting and imaging with semiconductor quantum dots.
        Nat Biotechnol. 2004; 22: 969-976
        • Stroh M.
        • Zimmer J.P.
        • Duda D.G.
        • et al.
        Quantum dots spectrally distinguish multiple species within the tumor milieu in vivo.
        Nat Med. 2005; 11: 678-682
        • Loo C.
        • Lowery A.
        • Halas N.
        • West J.
        • Drezek R.
        Immunotargeted nanoshells for integrated cancer imaging and therapy.
        Nano Lett. 2005; 5: 709-711
        • Hirsch L.R.
        • Stafford R.J.
        • Bankson J.A.
        • et al.
        Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance.
        Proc Natl Acad Sci USA. 2003; 100: 13549-13554
        • Westphal M.
        • Black P.M.
        Perspectives of cellular and molecular neurosurgery.
        J Neurooncol. 2004; 70: 255-269
        • Muller F.J.
        • Snyder E.Y.
        • Loring J.F.
        Gene therapy: can neural stem cells deliver?.
        Nat Rev Neurosci. 2006; 7: 75-84
        • Ehtesham M.
        • Stevenson C.B.
        • Thompson R.C.
        Stem cell therapies for malignant glioma.
        Neurosursg Focus. 2005; 19: E5
        • Serfozo P.
        • Schlarman M.S.
        • Pierret C.
        • Maria B.L.
        • Kirk M.D.
        Selective migration of neuralized embryonic stem cells to stem cell factor and media conditioned by glioma cell lines.
        Cancer Cell Int. 2006; 6: 1
        • Kim S.K.
        • Cargioli T.G.
        • Machluf M.
        • Yang W.
        • Sun Y.
        • Al-Hashem R.
        • et al.
        PEX-producing human neural stem cells inhibit tumor growth in a mouse glioma model.
        Clin Cancer Res. 2005; 11: 5965-5970