Advertisement

Delivering cancer stem cell therapies – A role for nanomedicines?

  • Andreas G. Schätzlein
    Correspondence
    Tel.: +44 141 330 4354; fax: +44 141 330 4127.
    Affiliations
    CRUK Centre for Oncology and Applied Pharmacology, Cancer Research UK Beatson Laboratories, University of Glasgow, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, UK
    Search for articles by this author

      Abstract

      Cancer stem cells (CSCs), i.e. cancer cells that can self-renew, constitute only a minority of the cells of a tumour, but, because of their ability to initiate and repopulate tumours, failure to control CSCs can potentially lead to tumour re-growth, even though the bulk tumour may have been treated successfully. Nanomedicines improve spatio-temporal control over drug kinetics and distribution, thus opening the prospect of safer and more specific therapies to address the challenges posed by CSCs. In particular, these systems have the potential to facilitate CSC-aware therapy by overcoming resistance to conventional cytotoxic drugs and by targeting novel therapies to the tumour and CSC-marker positive cells. This review examines the implications of the CSC paradigm specifically for the development of nanomedicines, i.e. therapies based on macromolecules or supramolecular aggregates.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to European Journal of Cancer
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Huntly B.J.
        • Gilliland D.G.
        Leukaemia stem cells and the evolution of cancer-stem-cell research.
        Nat Rev Cancer. 2005; 5: 311-321
        • Al-Hajj M.
        • Wicha M.S.
        • Benito-Hernandez A.
        • Morrison S.J.
        • Clarke M.F.
        Prospective identification of tumorigenic breast cancer cells.
        Proc Natl Acad Sci USA. 2003; 100: 3983-3988
        • Singh S.K.
        • Clarke I.D.
        • Terasaki M.
        • et al.
        Identification of a cancer stem cell in human brain tumors.
        Cancer Res. 2003; 63: 5821-5828
        • Al-Hajj M.
        • Becker M.W.
        • Wicha M.
        • Weissman I.
        • Clarke M.F.
        Therapeutic implications of cancer stem cells.
        Curr Opin Genet Dev. 2004; 14: 43-47
        • Schätzlein A.G.
        Tumour targeted drug and gene delivery: principles and concepts.
        Expert Rev Mol Med. 2004; 6: 1-17
        • Michor F.
        • Hughes T.P.
        • Iwasa Y.
        • et al.
        Dynamics of chronic myeloid leukaemia.
        Nature. 2005; 435: 1267-1270
        • Powell K.
        Stem-cell niches It’s the ecology, stupid!.
        Nature. 2005; 435: 268
        • Bissell M.J.
        • Radisky D.
        Putting tumours in context.
        Nat Rev Cancer. 2001; 1: 46-54
        • Dean M.
        • Fojo T.
        • Bates S.
        Tumour stem cells and drug resistance.
        Nat Rev Cancer. 2005; 5: 275-284
        • Larsen A.K.
        • Escargueil A.E.
        • Skladanowski A.
        Resistance mechanisms associated with altered intracellular distribution of anticancer agents.
        Pharmacol Therapeut. 2000; 85: 217-229
        • Minko T.
        • Kopeckova P.
        • Pozharov V.
        • Kopecek J.
        HPMA copolymer bound adriamycin overcomes MDR1 gene encoded resistance in a human ovarian carcinoma cell line.
        J Control Release. 1998; 54: 223-233
        • Duncan R.
        The dawning era of polymer therapeutics.
        Nature Rev Drug Discovery. 2003; 2: 347-360
        • Venne A.
        • Li S.
        • Mandeville R.
        • Kabanov A.
        • Alakhov V.
        Hypersensitizing effect of pluronic L61 on cytotoxic activity, transport, and subcellular distribution of doxorubicin in multiple drug-resistant cells.
        Cancer Res. 1996; 56: 3626-3629
        • Kabanov A.V.
        • Batrakova E.V.
        • Alakhov V.Y.
        An essential relationship between ATP depletion and chemosensitizing activity of Pluronic block copolymers.
        J Control Release. 2003; 91: 75-83
        • Kabanov A.V.
        • Batrakova E.V.
        • Alakhov V.Y.
        Pluronic block copolymers for overcoming drug resistance in cancer.
        Adv Drug Deliv Rev. 2002; 54: 759-779
        • Tokes Z.A.
        • Rogers K.E.
        • Rembaum A.
        Synthesis of adriamycin-coupled polyglutaraldehyde microspheres and evaluation of their cytostatic activity.
        Proc Natl Acad Sci USA. 1982; 79: 2026-2030
        • Minko T.
        • Batrakova E.V.
        • Li S.
        • et al.
        Pluronic block copolymers alter apoptotic signal transduction of doxorubicin in drug-resistant cancer cells.
        J Control Release. 2005; 105: 269-278
        • Patrawala L.
        • Calhoun T.
        • Schneider-Broussard R.
        • Zhou J.
        • Claypool K.
        • Tang D.G.
        Side population is enriched in tumorigenic, stem-like cancer cells, whereas ABCG2+ and ABCG2- cancer cells are similarly tumorigenic.
        Cancer Res. 2005; 65: 6207-6219
        • Schätzlein A.G.
        Targeting of synthetic gene delivery systems.
        J Biomed Biotechnol. 2003; 2003: 149-158
        • Maeda H.
        • Wu J.
        • Sawa T.
        • Matsumura Y.
        • Hori K.
        Tumor vascular permeability and the EPR effect in macromolecular therapeutics: a review.
        J Control Release. 2000; 65: 271-284
        • Ponti D.
        • Costa A.
        • Zaffaroni N.
        • et al.
        Isolation and in vitro propagation of tumorigenic breast cancer cells with stem/progenitor cell properties.
        Cancer Res. 2005; 65: 5506-5511
        • Singh S.K.
        • Hawkins C.
        • Clarke I.D.
        • et al.
        Identification of human brain tumour initiating cells.
        Nature. 2004; 432: 396-401
        • Yin A.H.
        • Miraglia S.
        • Zanjani E.D.
        • et al.
        AC133, a novel marker for human hematopoietic stem and progenitor cells.
        Blood. 1997; 90: 5002-5012
        • Alessandri G.
        • Pagano S.
        • Bez A.
        • et al.
        Isolation and culture of human muscle-derived stem cells able to differentiate into myogenic and neurogenic cell lineages.
        Lancet. 2004; 364: 1872-1883
        • Richardson G.D.
        • Robson C.N.
        • Lang S.H.
        • Neal D.E.
        • Maitland N.J.
        • Collins A.T.
        CD133, a novel marker for human prostatic epithelial stem cells.
        J Cell Sci. 2004; 117: 3539-3545
        • Fang D.
        • Nguyen T.K.
        • Leishear K.
        • et al.
        A tumorigenic subpopulation with stem cell properties in melanomas.
        Cancer Res. 2005; 65: 9328-9337
        • Toole B.P.
        Hyaluronan: from extracellular glue to pericellular cue.
        Nat Rev Cancer. 2004; 4: 528-539
        • Larsen N.E.
        • Balzas E.A.
        Drug delivery systems using hyaluronan and its derivatives.
        Adv Drug Del Rev. 1991; 7: 279-293
        • Drobnik J.
        Hyaluronan in drug delivery.
        Adv Drug Del Rev. 1991; 7: 295-308
        • Coradini D.
        • Pellizzaro C.
        • Miglierini G.
        • Daidone M.G.
        • Perbellini A.
        Hyaluronic acid as drug delivery for sodium butyrate: improvement of the anti-proliferative activity on a breast-cancer cell line.
        Int J Cancer. 1999; 81: 411-416
        • Eliaz R.E.
        • Szoka Jr., F.C.
        Liposome-encapsulated doxorubicin targeted to CD44: a strategy to kill CD44-overexpressing tumor cells.
        Cancer Res. 2001; 61: 2592-2601
        • Peer D.
        • Margalit R.
        Loading mitomycin C inside long circulating hyaluronan targeted nano-liposomes increases its antitumor activity in three mice tumor models.
        Int J Cancer. 2004; 108: 780-789
        • Peer D.
        • Margalit R.
        Tumor-targeted hyaluronan nanoliposomes increase the antitumor activity of liposomal Doxorubicin in syngeneic and human xenograft mouse tumor models.
        Neoplasia. 2004; 6: 343-353
        • Schätzlein A.G.
        Synthetic anti-cancer gene medicine exploits intrinsic anti-tumour activity of cationic vector to cure established tumours.
        Cancer Res. 2005; 65: 1
      1. Schätzlein AG. Tumour targeting of gene expression using hyaluronic acid–polypropylenimine dendrimer conjugates. In: Proceedings of the 30th annual meeting and exposition of the controlled release society, 19–23 July 2003. Glasgow (UK): Controlled Release Society; 2003, p. 635.