Advertisement

Profiling cancer stem cells using protein array technology

  • Satoshi Nishizuka
    Correspondence
    Tel.: +1 301 451 0238; fax: +1 301 480 6565.
    Affiliations
    Molecular Translational Technologies, Molecular Therapeutics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
    Laboratory of Proteomics and Analytical Technologies, SAIC-Frederick Inc., National Cancer Institute at Frederick, Frederic, MD 21702, USA
    Search for articles by this author

      Abstract

      Since cancer cells and somatic stem cells share the biological characteristics of self-renewal and proliferation, it has been suggested that the principles of stem cell biology can be applied to improve our understanding of cancer biology. Recent studies have shown that the majority of cancers appear to originate from a small subset of cells that have the ability of self-renewal and to proliferate, namely ‘cancer stem cells’. The isolation of cancer stem cells has been demonstrated using cell surface markers in haematopoietic and non-haematopoietic malignancies. Advances in protein array technologies have enabled the use of minuscule amounts of biological materials to profile these cells at the molecular level. Using a combination of protein arrays and cancer stem cell isolation techniques, a higher resolution molecular profiling can be performed, which might improve therapies targeting the cancer stem cells.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to European Journal of Cancer
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Reya T.
        • Morrison S.J.
        • Clarke M.F.
        • Weissman I.L.
        Stem cells, cancer, and cancer stem cells.
        Nature. 2001; 414: 105-111
        • Clarke M.F.
        Neurobiology: at the root of brain cancer.
        Nature. 2004; 432: 281-282
        • Huntly B.J.
        • Gilliland D.G.
        Leukaemia stem cells and the evolution of cancer-stem-cell research.
        Nat Rev Cancer. 2005; 5: 311-321
        • Hamburger A.W.
        • Salmon S.E.
        Primary bioassay of human tumor stem cells.
        Science. 1977; 197: 461-463
        • Bonnet D.
        • Dick J.E.
        Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell.
        Nat Med. 1997; 3: 730-737
        • Matsui W.
        • Huff C.A.
        • Wang Q.
        • et al.
        Characterization of clonogenic multiple myeloma cells.
        Blood. 2004; 103: 2332-2336
        • Al-Hajj M.
        • Wicha M.S.
        • Benito-Hernandez A.
        • Morrison S.J.
        • Clarke M.F.
        Prospective identification of tumorigenic breast cancer cells.
        Proc Natl Acad Sci USA. 2003; 100: 3983-3988
        • Singh S.K.
        • Clarke I.D.
        • Terasaki M.
        • et al.
        Identification of a cancer stem cell in human brain tumors.
        Cancer Res. 2003; 63: 5821-5828
        • Dean M.
        • Fojo T.
        • Bates S.
        Tumour stem cells and drug resistance.
        Nat Rev Cancer. 2005; 5: 275-284
        • Sakanyan V.
        High-throughput and multiplexed protein array technology: protein–DNA and protein–protein interactions.
        J Chromatogr B Analyt Technol Biomed Life Sci. 2005; 815: 77-95
        • Templin M.F.
        • Stoll D.
        • Schrenk M.
        • Traub P.C.
        • Vohringer C.F.
        • Joos T.O.
        Protein microarray technology.
        Drug Discov Today. 2002; 7: 815-822
        • Liotta L.A.
        • Espina V.
        • Mehta A.I.
        • et al.
        Protein microarrays: meeting analytical challenges for clinical applications.
        Cancer Cell. 2003; 3: 317-325
        • Utz P.J.
        Protein arrays for studying blood cells and their secreted products.
        Immunol Rev. 2005; 204: 264-282
        • Ahram M.
        • Flaig M.J.
        • Gillespie J.W.
        • et al.
        Evaluation of ethanol-fixed, paraffin-embedded tissues for proteomic applications.
        Proteomics. 2003; 3: 413-421
        • Paweletz C.P.
        • Liotta L.A.
        • Petricoin 3rd, E.F.
        New technologies for biomarker analysis of prostate cancer progression: Laser capture microdissection and tissue proteomics.
        Urology. 2001; 57: 160-163
        • Zangar R.C.
        • Varnum S.M.
        • Covington C.Y.
        • Smith R.D.
        A rational approach for discovering and validating cancer markers in very small samples using mass spectrometry and ELISA microarrays.
        Dis Markers. 2004; 20: 135-148
        • Petricoin E.F.
        • Zoon K.C.
        • Kohn E.C.
        • Barrett J.C.
        • Liotta L.A.
        Clinical proteomics: translating benchside promise into bedside reality.
        Nat Rev Drug Discov. 2002; 1: 683-695
        • Liotta L.
        • Petricoin E.
        Molecular profiling of human cancer.
        Nat Rev Genet. 2000; 1: 48-56
        • Handgretinger R.
        • Gordon P.R.
        • Leimig T.
        • et al.
        Biology and plasticity of CD133+ hematopoietic stem cells.
        Ann NY Acad Sci. 2003; 996: 141-151
        • Paweletz C.P.
        • Charboneau L.
        • Bichsel V.E.
        • et al.
        Reverse phase protein microarrays which capture disease progression show activation of pro-survival pathways at the cancer invasion front.
        Oncogene. 2001; 20: 1981-1989
        • Nishizuka S.
        • Charboneau L.
        • Young L.
        • et al.
        Proteomic profiling of the NCI-60 cancer cell lines using new high-density reverse-phase lysate microarrays.
        Proc Natl Acad Sci USA. 2003; 100: 14229-14234
        • Gioanni J.
        • Farges M.F.
        • Duplay H.
        • et al.
        In vitro clonogenicity in relation to kinetic and clinicopathological features of breast cancer.
        Bull Cancer. 1988; 75: 285-290
        • Price J.E.
        • Tarin D.
        Low incidence of tumourigenicity in agarose colonies from spontaneous murine mammary tumours.
        Differentiation. 1989; 41: 202-207
        • Pardal R.
        • Clarke M.F.
        • Morrison S.J.
        Applying the principles of stem-cell biology to cancer.
        Nat Rev Cancer. 2003; 3: 895-902
        • Lapidot T.
        • Sirard C.
        • Vormoor J.
        • et al.
        A cell initiating human acute myeloid leukaemia after transplantation into SCID mice.
        Nature. 1994; 367: 645-648
        • Morrison S.J.
        • White P.M.
        • Zock C.
        • Anderson D.J.
        Prospective identification, isolation by flow cytometry, and in vivo self-renewal of multipotent mammalian neural crest stem cells.
        Cell. 1999; 96: 737-749
        • Uchida N.
        • Buck D.W.
        • He D.
        • et al.
        Direct isolation of human central nervous system stem cells.
        Proc Natl Acad Sci USA. 2000; 97: 14720-14725
        • Preston S.L.
        • Alison M.R.
        • Forbes S.J.
        • Direkze N.C.
        • Poulsom R.
        • Wright N.A.
        The new stem cell biology: something for everyone.
        Mol Pathol. 2003; 56: 86-96
        • Anderson D.J.
        • Gage F.H.
        • Weissman I.L.
        Can stem cells cross lineage boundaries?.
        Nat Med. 2001; 7: 393-395
        • Jiang Y.
        • Jahagirdar B.N.
        • Reinhardt R.L.
        • et al.
        Pluripotency of mesenchymal stem cells derived from adult marrow.
        Nature. 2002; 418: 41-49
        • Krause D.S.
        • Theise N.D.
        • Collector M.I.
        • et al.
        Multi-organ, multi-lineage engraftment by a single bone marrow-derived stem cell.
        Cell. 2001; 105: 369-377
        • Houghton J.
        • Stoicov C.
        • Nomura S.
        • et al.
        Gastric cancer originating from bone marrow-derived cells.
        Science. 2004; 306: 1568-1571
        • Bissell M.J.
        • Labarge M.A.
        Context, tissue plasticity, and cancer: are tumor stem cells also regulated by the microenvironment?.
        Cancer Cell. 2005; 7: 17-23
        • Singh S.K.
        • Hawkins C.
        • Clarke I.D.
        • et al.
        Identification of human brain tumour initiating cells.
        Nature. 2004; 432: 396-401
        • Potten C.S.
        • Booth C.
        • Tudor G.L.
        • et al.
        Identification of a putative intestinal stem cell and early lineage marker; musashi-1.
        Differentiation. 2003; 71: 28-41
        • Radtke F.
        • Clevers H.
        Self-renewal and cancer of the gut: two sides of a coin.
        Science. 2005; 307: 1904-1909
        • Pinto D.
        • Clevers H.
        Wnt, stem cells and cancer in the intestine.
        Biol Cell. 2005; 97: 185-196
        • Brittan M.
        • Wright N.A.
        Stem cell in gastrointestinal structure and neoplastic development.
        Gut. 2004; 53: 899-910
        • Powell S.M.
        • Zilz N.
        • Beazer-Barclay Y.
        • et al.
        APC mutations occur early during colorectal tumorigenesis.
        Nature. 1992; 359: 235-237
        • Vogelstein B.
        • Fearon E.R.
        • Hamilton S.R.
        • et al.
        Genetic alterations during colorectal-tumor development.
        New Engl J Med. 1988; 319: 525-532
        • Fearon E.R.
        • Vogelstein B.
        A genetic model for colorectal tumorigenesis.
        Cell. 1990; 61: 759-767
        • Preston S.L.
        • Wong W.M.
        • Chan A.O.
        • et al.
        Bottom–up histogenesis of colorectal adenomas: origin in the monocryptal adenoma and initial expansion by crypt fission.
        Cancer Res. 2003; 63: 3819-3825
        • Shih I.M.
        • Wang T.L.
        • Traverso G.
        • et al.
        Top–down morphogenesis of colorectal tumors.
        Proc Natl Acad Sci USA. 2001; 98: 2640-2645
        • Kondo T.
        • Raff M.
        Oligodendrocyte precursor cells reprogrammed to become multipotential CNS stem cells.
        Science. 2000; 289: 1754-1757
        • Palmer T.D.
        • Markakis E.A.
        • Willhoite A.R.
        • Safar F.
        • Gage F.H.
        Fibroblast growth factor-2 activates a latent neurogenic program in neural stem cells from diverse regions of the adult CNS.
        J Neurosci. 1999; 19: 8487-8497
        • Donovan P.J.
        Growth factor regulation of mouse primordial germ cell development.
        Curr Top Dev Biol. 1994; 29: 189-225
        • Matsui Y.
        • Zsebo K.
        • Hogan B.L.
        Derivation of pluripotential embryonic stem cells from murine primordial germ cells in culture.
        Cell. 1992; 70: 841-847
        • Ekins R.
        A shadow over immunoassay.
        Nature. 1989; 340: 256-258
        • Ekins R.P.
        Multi-analyte immunoassay.
        J Pharm Biomed Anal. 1989; 7: 155-168
        • Ekins R.P.
        • Chu F.W.
        Multianalyte microspot immunoassay – microanalytical ‘compact disk’ of the future.
        Clin Chem. 1991; 37: 1955-1967
        • Ekins R.P.
        • Chu F.
        Developing multianalyte assays.
        Trends Biotechnol. 1994; 12: 89-94
        • Ekins R.P.
        Ligand assays: from electrophoresis to miniaturized microarrays.
        Clin Chem. 1998; 44: 2015-2030
        • DeLean A.
        • Munson P.J.
        • Rodbard D.
        Simultaneous analysis of families of sigmoidal curves: application to bioassay, radioligand assay, and physiological dose–response curves.
        Am J Physiol. 1978; 235: E97-E102
        • Mendoza L.G.
        • McQuary P.
        • Mongan A.
        • Gangadharan R.
        • Brignac S.
        • Eggers M.
        High-throughput microarray-based enzyme-linked immunosorbent assay (ELISA).
        Biotechniques. 1999; 27 (782–6): 778-780
        • Knezevic V.
        • Leethanakul C.
        • Bichsel V.E.
        • et al.
        Proteomic profiling of the cancer microenvironment by antibody arrays.
        Proteomics. 2001; 1: 1271-1278
        • Wiese R.
        • Belosludtsev Y.
        • Powdrill T.
        • Thompson P.
        • Hogan M.
        Simultaneous multianalyte ELISA performed on a microarray platform.
        Clin Chem. 2001; 47: 1451-1457
        • Woodbury R.L.
        • Varnum S.M.
        • Zangar R.C.
        Elevated HGF levels in sera from breast cancer patients detected using a protein microarray ELISA.
        J Proteome Res. 2002; 1: 233-237
      1. Haab BB, Dunham MJ, Brown PO. Protein microarrays for highly parallel detection and quantitation of specific proteins and antibodies in complex solutions. Genome Biol 2001;2(2):RESEARCH0004.

        • Lee K.B.
        • Park S.J.
        • Mirkin C.A.
        • Smith J.C.
        • Mrksich M.
        Protein nanoarrays generated by dip-pen nanolithography.
        Science. 2002; 295: 1702-1705
        • Wu G.
        • Datar R.H.
        • Hansen K.M.
        • Thundat T.
        • Cote R.J.
        • Majumdar A.
        Bioassay of prostate-specific antigen (PSA) using microcantilevers.
        Nat Biotechnol. 2001; 19: 856-860
        • Ge H.
        UPA, a universal protein array system for quantitative detection of protein–protein, protein–DNA, protein–RNA and protein–ligand interactions.
        Nucleic Acids Res. 2000; 28: e3
        • MacBeath G.
        • Schreiber S.L.
        Printing proteins as microarrays for high-throughput function determination.
        Science. 2000; 289: 1760-1763
        • Zhu H.
        • Bilgin M.
        • Bangham R.
        • et al.
        Global analysis of protein activities using proteome chips.
        Science. 2001; 293: 2101-2105
        • Michaud G.A.
        • Salcius M.
        • Zhou F.
        • et al.
        Analyzing antibody specificity with whole proteome microarrays.
        Nat Biotechnol. 2003; 21: 1509-1512
        • Madoz-Gurpide J.
        • Wang H.
        • Misek D.E.
        • Brichory F.
        • Hanash S.M.
        Protein based microarrays: a tool for probing the proteome of cancer cells and tissues.
        Proteomics. 2001; 1: 1279-1287
        • Zhu H.
        • Klemic J.F.
        • Chang S.
        • et al.
        Analysis of yeast protein kinases using protein chips.
        Nat Genet. 2000; 26: 283-289
        • Houseman B.T.
        • Huh J.H.
        • Kron S.J.
        • Mrksich M.
        Peptide chips for the quantitative evaluation of protein kinase activity.
        Nat Biotechnol. 2002; 20: 270-274
        • Robinson W.H.
        • DiGennaro C.
        • Hueber W.
        • et al.
        Autoantigen microarrays for multiplex characterization of autoantibody responses.
        Nat Med. 2002; 8: 295-301
        • Eckel-Passow J.E.
        • Hoering A.
        • Therneau T.M.
        • Ghobrial I.
        Experimental design and analysis of antibody microarrays: applying methods from cDNA arrays.
        Cancer Res. 2005; 65: 2985-2989
        • Kwon Y.
        • Han Z.
        • Karatan E.
        • Mrksich M.
        • Kay B.K.
        Antibody arrays prepared by cutinase-mediated immobilization on self-assembled monolayers.
        Anal Chem. 2004; 76: 5713-5720
        • Lee Y.
        • Lee E.K.
        • Cho Y.W.
        • et al.
        ProteoChip: a highly sensitive protein microarray prepared by a novel method of protein immobilization for application of protein–protein interaction studies.
        Proteomics. 2003; 3: 2289-2304
      2. Available from: <http://www.invitrogen.com>.

        • Nishizuka S.
        • Chen S.T.
        • Gwadry F.G.
        • et al.
        Diagnostic markers that distinguish colon and ovarian adenocarcinomas: identification by genomic, proteomic, and tissue array profiling.
        Cancer Res. 2003; 63: 5243-5250
        • von Wasielewski R.
        • Mengel M.
        • Gignac S.
        • Wilkens L.
        • Werner M.
        • Georgii A.
        Tyramine amplification technique in routine immunohistochemistry.
        J Histochem Cytochem. 1997; 45: 1455-1459
        • Vuong G.L.
        • Weiss S.M.
        • Kammer W.
        • et al.
        Improved sensitivity proteomics by postharvest alkylation and radioactive labelling of proteins.
        Electrophoresis. 2000; 21: 2594-2605
        • Simpson R.
        Proteins and proteomics.
        Cold Spring Harbor Laboratory Press, Woodbury, NY, USA2003
        • Richards P.
        • Lees J.
        Functional proteomics using microchannel plate detectors.
        Proteomics. 2002; 2: 256-261
        • Bacarese-Hamilton T.
        • Mezzasoma L.
        • et al.
        Detection of allergen-specific IgE on microarrays by use of signal amplification techniques.
        Clin Chem. 2002; 48: 1367-1370
        • Bobrow M.N.
        • Harris T.D.
        • Shaughnessy K.J.
        • Litt G.J.
        Catalyzed reporter deposition, a novel method of signal amplification. Application to immunoassays.
        J Immunol Methods. 1989; 125: 279-285
        • Bobrow M.N.
        • Shaughnessy K.J.
        • Litt G.J.
        Catalyzed reporter deposition, a novel method of signal amplification. II. Application to membrane immunoassays.
        J Immunol Methods. 1991; 137: 103-112
        • Anderson N.L.
        • Esquer-Blasco R.
        • Hofmann J.P.
        • Anderson N.G.
        A two-dimensional gel database of rat liver proteins useful in gene regulation and drug effects studies.
        Electrophoresis. 1991; 12: 907-930
      3. Available from: http://aushon.com/.

        • Major S.M.
        • Nishizuka S.
        • Morita D.
        • et al.
        AbMiner: A bioinformatic resource on available monoclonal antibodies and corresponding gene identifiers for genomic, proteomic, and immunologic studies.
        BMC Bioinformatics. 2006; 7: 192
        • Jones K.D.
        Troubleshooting protein binding in nitrocellulose membranes.
        IVD Technology Magazine. 1999; : 26
      4. Available from: <http://www.gracebio.com/>.

        • Stillman B.A.
        • Tonkinson J.L.
        FAST slides: a novel surface for microarrays.
        Biotechniques. 2000; 29: 630-635
        • Bacarese-Hamilton T.
        • Gray J.
        • Crisanti A.
        Proteome-scale analysis of the immune response against pathogenic microorganisms.
        in: Schena M. Protein microarrays. Jones and Bartlet, Sudbury, MA, USA2004: 387-400
        • Calvert V.S.
        • Tang Y.
        • Boveia V.
        • et al.
        Development of multiplexed protein profiling and detection using near infrared detection of reverse-phase protein microarrays.
        Clin Proteom J. 2004; 1: 81-89
        • Nishizuka S.
        • Washburn N.R.
        • Munson P.J.
        Evaluation method of ordinary flatbed scanners for quantitative density analysis.
        BioTechniques. 2006; 40: 442-448
        • Chan S.M.
        • Ermann J.
        • Su L.
        • Fathman C.G.
        • Utz P.J.
        Protein microarrays for multiplex analysis of signal transduction pathways.
        Nat Med. 2004; 10: 1390-1396
      5. Available from: <http://abs.cit.nih.gov/pscan/>.

        • Carlisle A.J.
        • Prabhu V.V.
        • Elkahloun A.
        • et al.
        Development of a prostate cDNA microarray and statistical gene expression analysis package.
        Mol Carcinog. 2000; 28: 12-22
        • Liu A.Y.
        • Roudier M.P.
        • True L.D.
        Heterogeneity in primary and metastatic prostate cancer as defined by cell surface CD profile.
        Am J Pathol. 2004; 165: 1543-1556