Advertisement

Stem cell properties and epithelial malignancies

      Abstract

      The growth and repair of normal tissues depends on a small sub-population of cells termed somatic stem cells whose primary characteristic is an ability for indefinite self-renewal. Epithelial stem cells divide to produce cells, termed transient amplifying cells, that undergo a few rounds of more rapid division before they terminally differentiate. Evidence that the growth of tumours, as for normal tissues, is ultimately dependent on a subpopulation of the proliferatively competent cells was first shown for leukaemias by isolation of small sub-populations of phenotypically distinct ‘tumour-initiating cells’. Differing cell surface phenotypes also prospectively identify tumour-initiating sub-populations in solid tumours. Even cell lines derived from tumours retain hierarchical stem cell patterns demonstrable as differing clonogenic abilities related to cellular properties such as size, adhesiveness, dye exclusion, and patterns of gene expression. Malignant stem cells appear to form the primary targets of therapy, but how differences between malignant stem and other cells affect therapeutic responses remains unclear. However, transplantation methods exist for their analysis and the in vitro persistence of stem cell patterns may provide systems for developing new therapeutic approaches.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to European Journal of Cancer
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Potten C.S.
        Stem cells: their identification and characterization.
        Churchill Livingstone, Cambridge1983
        • Alonso L.
        • Fuchs E.
        Stem cells of the skin epithelium.
        Proc Natl Acad Sci USA. 2003; 100: 11830-11835
        • Lajtha L.G.
        Stem cell concepts.
        Differentiation. 1979; 14: 23-34
        • Molofsky A.V.
        • Pardal R.
        • Morrison S.J.
        Diverse mechanisms regulate stem cell self-renewal.
        Curr Opin Cell Biol. 2004; 16: 700-707
        • Cotsarelis G.
        • Kaur P.
        • Dhouailly D.
        • Hengge U.
        • Bickenbach J.
        Epithelial stem cells in the skin: definition, markers, localization and functions.
        Exp Dermatol. 1999; 8: 80-88
        • Lavker R.M.
        • Sun T.T.
        Epidermal stem cells: properties, markers, and location.
        Proc Natl Acad Sci USA. 2000; 97: 13473-13475
        • Bickenbach J.R.
        • Mackenzie I.C.
        Identification and localization of label-retaining cells in hamster epithelia.
        J Invest Dermatol. 1984; 82: 618-622
        • Marshman E.
        • Booth C.
        • Potten C.S.
        The intestinal epithelial stem cell.
        Bioessays. 2002; 24: 91-98
        • Pellegrini G.
        • Dellambra E.
        • Golisano O.
        • et al.
        p63 identifies keratinocyte stem cells.
        Proc Natl Acad Sci USA. 2001; 98: 3156-3161
        • Reya T.
        • Morrison S.J.
        • Clarke M.F.
        • Weissman I.L.
        Stem cells, cancer, and cancer stem cells.
        Nature. 2001; 414: 105-111
        • Spradling A.
        • Drummond-Barbosa D.
        • Kai T.
        Stem cells find their niche.
        Nature. 2001; 414: 98-104
        • Watt F.M.
        • Hogan B.L.
        Out of Eden: stem cells and their niches.
        Science. 2000; 287: 1427-1430
        • Barrandon Y.
        • Green H.
        Three clonal types of keratinocyte with different capacities for multiplication.
        Proc Natl Acad Sci USA. 1987; 84: 2302-2306
        • Tudor D.
        • Locke M.
        • Owen-Jones E.
        • Mackenzie I.C.
        Intrinsic patterns of behavior of epithelial stem cells.
        J Investig Dermatol Symp Proc. 2004; 9: 208-214
        • Locke M.
        • Heywood M.
        • Fawell S.
        • Mackenzie I.C.
        Retention of intrinsic stem cell hierarchies in carcinoma-derived cell lines.
        Cancer Res. 2005; 65: 8944-8950
        • Ponti D.
        • Costa A.
        • Zaffaroni N.
        • et al.
        Isolation and in vitro propagation of tumorigenic breast cancer cells with stem/progenitor cell properties.
        Cancer Res. 2005; 65: 5506-5511
        • Jones R.J.
        • Matsui W.H.
        • Smith B.D.
        Cancer stem cells: are we missing the target?.
        J Natl Cancer Inst. 2004; 96: 583-585
        • Tsai R.Y.
        A molecular view of stem cell and cancer cell self-renewal.
        Int J Biochem Cell Biol. 2004; 36: 684-694
        • Bonnet D.
        Cancer stem cells: AMLs show the way.
        Biochem Soc Trans. 2005; 33: 1531-1533
        • Morrison S.J.
        • Uchida N.
        • Weissman I.L.
        The biology of hematopoietic stem cells.
        Annu Rev Cell Dev Biol. 1995; 11: 35-71
        • Bonnet D.
        • Dick J.E.
        Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell.
        Nat Med. 1997; 3: 730-737
        • Watt F.M.
        Stem cell fate and patterning in mammalian epidermis.
        Curr Opin Genet Dev. 2001; 11: 410-417
        • Potten C.S.
        • Booth C.
        • Hargreaves D.
        The small intestine as a model for evaluating adult tissue stem cell drug targets.
        Cell Prolif. 2003; 36: 115-129
        • Potten C.S.
        • Grant H.K.
        The relationship between ionizing radiation-induced apoptosis and stem cells in the small and large intestine.
        Br J Cancer. 1998; 78: 993-1003
        • Potten C.S.
        Apoptosis in oral mucosa: lessons from the crypt. A commentary.
        Oral Dis. 2001; 7: 81-85
        • Claudinot S.
        • Nicolas M.
        • Oshima H.
        • Rochat A.
        • Barrandon Y.
        Long-term renewal of hair follicles from clonogenic multipotent stem cells.
        Proc Natl Acad Sci USA. 2005; 102: 14677-14682
        • Dontu G.
        • Al-Hajj M.
        • Abdallah W.M.
        • Clarke M.F.
        • Wicha M.S.
        Stem cells in normal breast development and breast cancer.
        Cell Prolif. 2003; 36: 59-72
        • Hudson D.L.
        Epithelial stem cells in human prostate growth and disease.
        Prostate Cancer Prostatic Dis. 2004; 7: 188-194
        • Barrandon Y.
        • Morgan J.R.
        • Mulligan R.C.
        • Green H.
        Restoration of growth potential in paraclones of human keratinocytes by a viral oncogene.
        Proc Natl Acad Sci USA. 1989; 86: 4102-4116
        • Ferraris C.
        • Chaloin-Dufau C.
        • Dhouailly D.
        Transdifferentiation of embryonic and postnatal rabbit corneal epithelial cells.
        Differentiation. 1994; 57: 89-96
        • Arai F.
        • Hirao A.
        • Ohmura M.
        • et al.
        Tie2/angiopoietin-1 signaling regulates hematopoietic stem cell quiescence in the bone marrow niche.
        Cell. 2004; 118: 149-161
        • Barrandon Y.
        • Green H.
        Cell size as a determinant of the clone-forming ability of human keratinocytes.
        Proc Natl Acad Sci USA. 1985; 82: 5390-5394
        • Gao Z.
        • Mackenzie I.C.
        Influence of retinoic acid on the expression of cytokeratins, vimentin and ICAM-1 in human gingival epithelia in vitro.
        J Periodontal Res. 1996; 31: 81-89
        • Reynolds B.A.
        • Tetzlaff W.
        • Weiss S.
        A multipotent EGF-responsive striatal embryonic progenitor cell produces neurons and astrocytes.
        J Neurosci. 1992; 12: 4565-4574
        • Dontu G.
        • Wicha M.S.
        Survival of mammary stem cells in suspension culture: implications for stem cell biology and neoplasia.
        J Mammary Gland Biol Neoplasia. 2005; 10: 75-86
        • Bickenbach J.R.
        Identification and behavior of label-retaining cells in oral mucosa and skin.
        J Dent Res. 1981; 60: 1611-1620
        • Morris R.J.
        • Potten C.S.
        Slowly cycling (label-retaining) epidermal cells behave like clonogenic stem cells in vitro.
        Cell Prolif. 1994; 27: 279-289
        • Potten C.S.
        • Owen G.
        • Booth D.
        Intestinal stem cells protect their genome by selective segregation of template DNA strands.
        J Cell Sci. 2002; 115: 2381-2388
        • Mackenzie I.C.
        Retroviral transduction of murine epidermal stem cells demonstrates clonal units of epidermal structure.
        J Invest Dermatol. 1995; 109: 377-383
        • Jones P.H.
        • Harper S.
        • Watt F.M.
        Stem cell patterning and fate in human epidermis.
        Cell. 1995; 80: 83-93
        • Ghazizadeh S.
        • Taichman L.B.
        Organization of stem cells and their progeny in human epidermis.
        J Invest Dermatol. 2005; 124: 367-372
        • Huntly B.J.
        • Gilliland D.G.
        Cancer biology: summing up cancer stem cells.
        Nature. 2005; 435: 1169-1170
        • Oshima H.
        • Rochat A.
        • Kedzia C.
        • Kobayashi K.
        • Barrandon Y.
        Morphogenesis and renewal of hair follicles from adult multipotent stem cells.
        Cell. 2001; 104: 233-245
        • Liang L.
        • Bickenbach J.R.
        Somatic epidermal stem cells can produce multiple cell lineages during development.
        Stem Cells. 2002; 20: 21-31
        • Cunha G.R.
        • Bigsby R.M.
        • Cooke P.S.
        • Sugimura Y.
        Stromal–epithelial interactions in adult organs.
        Cell Differ. 1985; 17: 137-148
        • Mackenzie IC
        Epithelial–mesenchymal interactions in the development and maintenance of epithelial tissues.
        in: The keratinocyte handbook. Cambridge University Press, Cambridge1994
        • Hamburger A.W.
        • Salmon S.E.
        Primary bioassay of human tumor stem cells.
        Science. 1977; 197: 461-463
        • Pierce G.B.
        • Speers W.C.
        Tumors as caricatures of the process of tissue renewal: prospects for therapy by directing differentiation.
        Cancer Res. 1998; 48: 1996-2004
        • Denekamp J.
        Tumour stem cells: facts, interpretation and consequences.
        Radiother Oncol. 1994; 30: 6-10
        • Kummermehr J.C.
        Tumour stem cells – the evidence and the ambiguity.
        Acta Oncol. 2001; 40: 981-988
        • Al Hajj M.
        • Wicha M.S.
        • Benito-Hernandez A.
        • Morrison S.J.
        • Clarke M.F.
        Prospective identification of tumorigenic breast cancer cells.
        Proc Natl Acad Sci USA. 2003; 100: 3983-3988
        • Singh S.K.
        • Clarke I.D.
        • Terasaki M.
        • et al.
        Identification of a cancer stem cell in human brain tumors.
        Cancer Res. 2003; 63: 5821-5828
        • Behbod F.
        • Rosen J.M.
        Will cancer stem cells provide new therapeutic targets?.
        Carcinogenesis. 2005; 26: 703-711
        • Sell S.
        • Pierce G.B.
        Maturation arrest of stem cell differentiation is a common pathway for the cellular origin of teratocarcinomas and epithelial cancers.
        Lab Invest. 1994; 70: 6-22
        • Balmain A.
        • Brown K.
        • Akhurst R.J.
        • Fee F.M.
        Molecular analysis of chemical carcinogenesis in the skin.
        Br J Cancer Suppl. 1988; 9: 72-75
        • Morris R.J.
        Keratinocyte stem cells: targets for cutaneous carcinogens.
        J Clin Invest. 2000; 106: 3-8
        • Mackenzie I.C.
        • Bickenbach J.R.
        Patterns of epidermal cell proliferation.
        Carcin Compr Surv. 1982; 7: 311-317
        • Potten C.S.
        Cell replacement in epidermis (keratopoiesis) via discrete units of proliferation.
        Int Rev Cytol. 1981; 69: 271-318
        • Smith G.H.
        Label-retaining epithelial cells in mouse mammary gland divide asymmetrically and retain their template DNA strands.
        Development. 2005; 132: 681-687
        • Frank S.A.
        • Nowak M.A.
        Problems of somatic mutation and cancer.
        Bioessays. 2004; 26: 291-299
        • Zhang W.
        • Hanks A.N.
        • Boucher K.
        • et al.
        UVB-induced apoptosis drives clonal expansion during skin tumor development.
        Carcinogenesis. 2005; 26: 249-257
        • Braakhuis B.J.
        • Leemans C.R.
        • Brakenhoff R.H.
        A genetic progression model of oral cancer: current evidence and clinical implications.
        J Oral Pathol Med. 2004; 33: 317-322
        • Goodell M.A.
        • Brose K.
        • Paradis G.
        • Conner A.S.
        • Mulligan R.C.
        Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo.
        J Exp Med. 1996; 183: 1797-1806
        • Hirschmann-Jax C.
        • Foster A.E.
        • Wulf G.G.
        • et al.
        A distinct ‘side population’ of cells with high drug efflux capacity in human tumor cells.
        Proc Natl Acad Sci USA. 2004; 101: 14228-14233
        • Kim C.F.
        • Jackson E.L.
        • Woolfenden A.E.
        • et al.
        Identification of bronchioalveolar stem cells in normal lung and lung cancer.
        Cell. 2005; 121: 823-835
        • Welm B.
        • Behbod F.
        • Goodell M.A.
        • Rosen J.M.
        Isolation and characterization of functional mammary gland stem cells.
        Cell Prolif. 2003; 36: 17-32
        • Ignatova T.N.
        • Kukekov V.G.
        • Laywell E.D.
        • Suslov O.N.
        • Vrionis F.D.
        • Steindler D.A.
        Human cortical glial tumors contain neural stem-like cells expressing astroglial and neuronal markers in vitro.
        Glia. 2002; 39: 193-206
        • Sherley J.L.
        Asymmetric cell kinetics genes: the key to expansion of adult stem cells in culture.
        Stem Cells. 2002; 20: 561-572
        • Weiss L.
        Cancer cell heterogeneity.
        Cancer Metast Rev. 2000; 19: 345-350
        • Mackenzie
        Growth of malignant oral epithelial stem cells after seeding into organotypical cultures of normal mucosa.
        J Oral Path Med. 2004; 33: 71-78
        • Resnicoff M.
        • Medrano E.E.
        • Podhajcer O.L.
        • Bravo A.I.
        • Bover L.
        • Mordoh J.
        Subpopulations of MCF7 cells separated by Percoll gradient centrifugation: a model to analyze the heterogeneity of human breast cancer.
        Proc Natl Acad Sci USA. 1987; 84: 7295-7299
        • Setoguchi T.
        • Taga T.
        • Kondo T.
        Cancer stem cells persist in many cancer cell lines.
        Cell Cycle. 2004; 3: 414-415
        • Pardal R.
        • Clarke M.F.
        • Morrison S.J.
        Applying the principles of stem-cell biology to cancer.
        Nat Rev Cancer. 2003; 3: 895-902
        • Al Hajj M.
        • Becker M.W.
        • Wicha M.
        • Weissman I.
        • Clarke M.F.
        Therapeutic implications of cancer stem cells.
        Curr Opin Genet Dev. 2004; 14: 43-47
        • Al-Hajj M.
        • Clarke M.F.
        Self-renewal and solid tumor stem cells.
        Oncogene. 2004; 23: 7274-7282
        • Faubert A.
        • Lessard J.
        • Sauvageau G.
        Are genetic determinants of asymmetric stem cell division active in hematopoietic stem cells?.
        Oncogene. 2004; 23: 7247-7255
        • Waikel R.L.
        • Kawachi Y.
        • Waikel P.A.
        • Wang X.J.
        • Roop D.R.
        Deregulated expression of c-Myc depletes epidermal stem cells.
        Nat Genet. 2001; 28: 165-168
        • Koster M.I.
        • Roop D.R.
        The role of p63 in development and differentiation of the epidermis.
        J Dermatol Sci. 2004; 34: 3-9
        • Tai M.H.
        • Chang C.C.
        • Kiupel M.
        • Webster J.D.
        • Olson L.K.
        • Trosko J.E.
        Oct4 expression in adult human stem cells: evidence in support of the stem cell theory of carcinogenesis.
        Carcinogenesis. 2005; 26: 495-502