Advertisement

Brain cancer stem-like cells

  • Toru Kondo
    Correspondence
    Tel./fax: +81 78 306 3172.
    Affiliations
    Centre for Brain Repair, University of Cambridge, Cambridge CB2 2PY, UK
    Laboratory for Cell Lineage Modulation, Center for Developmental Biology, RIKEN, 2-2-3 Minatojima, Minamimachi, Chuo-ku, Kobe 650-0047, Japan
    Search for articles by this author

      Abstract

      Both stem cells and cancer cells are thought to be capable of unlimited proliferation. Moreover, many tumours and cancer cell lines express stem cell markers, including adenosine triphosphate (ATP)-binding cassette transporters, by which the cells pump out specific fluorescent dyes as well as anti-cancer drugs, suggesting either that cancer cells resemble stem cells or that cancers contain stem-like cells. Using the common characteristics of brain tumour cells and neural stem cells, several research groups have succeeded in identifying stem-like cells (cancer stem-like cells) in brain tumours and brain cancer cell lines. The purified cancer stem-like cells, but not the other cancer cells, self-renew and form tumours when transplanted in vivo. Thus, cancer stem-like cells in brain tumours might be a crucial target for anti-brain tumour therapy.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to European Journal of Cancer
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Watt F.M.
        • Hogan B.L.
        Out of Eden: stem cells and their niches.
        Science. 2000; 287: 1427-1430
        • Weissman I.L.
        • Anderson D.J.
        • Gage F.
        Stem and progenitor cells: origins, phenotypes, lineage commitments, and transdifferentiations.
        Annu Rev Cell Dev Biol. 2001; 17: 387-403
        • Gage F.
        Mammalian neural stem cells.
        Science. 2000; 287: 1433-1438
        • Temple S.
        The development of neural stem cells.
        Nature. 2001; 414: 112-117
        • Poste G.
        • Greig R.
        On the genesis and regulation of cellular heterogeneity in malignant tumors.
        Invas Metast. 1982; 2: 137-176
        • Woodruff M.F.
        Cellular heterogeneity in tumors.
        Br J Cancer. 1983; 47: 589-594
        • Sell S.
        • Pierce G.B.
        Maturation arrest of stem cell differentiation is a common pathway for the cellular origin of teratocarcinomas and epithelial cancers.
        Lab Invest. 1994; 70: 6-22
        • Reya T.
        • Morrison S.J.
        • Clarke M.F.
        • Weissman I.L.
        Stem cells, cancer, and cancer stem cells.
        Nature. 2001; 414: 105-111
        • Tu S.M.
        • Lin S.H.
        • Logothetis C.J.
        Stem-cell origin of metastasis and heterogeneity in solid tumours.
        Lancet Oncol. 2002; 3: 508-513
        • Wulf G.G.
        • Wang R.-.Y.
        • Kuehnle I.
        • et al.
        A leukemic stem cell with intrinsic drug efflux capacity in acute myeloid leukemia.
        Blood. 2001; 98: 1166-1173
        • Ignatova T.N.
        • Kukekov V.G.
        • Laywell E.D.
        • Suslov O.N.
        • Vrionis F.D.
        • Steindler D.A.
        Human cortical glial tumors contain neural stem-like cells expressing astroglial and neuronal markers in vitro.
        Glia. 2002; 39: 193-206
        • Al-Hajj M.
        • Wicha M.S.
        • Benito-Hernandez A.
        • Morrison S.J.
        • Clarke M.F.
        Prospective identification of tumorigenic breast cancer cells.
        Proc Natl Acad Sci USA. 2003; 100: 983-988
        • Hemmati H.D.
        • Nakano I.
        • Lazareff J.A.
        • et al.
        Cancerous stem cells can arise from pediatric brain tumors.
        Proc Natl Acad Sci USA. 2003; 100: 15178-15183
        • Singh S.K.
        • Clarke I.D.
        • Terasaki M.
        • et al.
        Identification of a cancer stem cell in human brain tumors.
        Cancer Res. 2003; 63: 5821-5828
        • Galli R.
        • Binda E.
        • Orfanelli U.
        • et al.
        Isolation and characterization of tumorigenic, stem-like neural precursors from human glioblastoma.
        Cancer Res. 2004; 64: 7011-7021
        • Hirschmann-Jax C.
        • Foster A.E.
        • Wulf G.G.
        • et al.
        A distinct ‘side population’ of cells with high drug efflux capacity in human tumor cells.
        Proc Natl Acad Sci USA. 2004; 101: 14228-14233
        • Kondo T.
        • Setoguchi T.
        • Taga T.
        Persistence of a small subpopulation of cancer stem-like cells in the C6 glioma cell line.
        Proc Natl Acad Sci USA. 2004; 101: 781-786
        • Singh S.K.
        • Hawkins C.
        • Clarke I.D.
        • et al.
        Identification of human brain tumour initiating cells.
        Nature. 2004; 432: 396-401
        • Yuan X.
        • Curtin J.
        • Xiong Y.
        • et al.
        Isolation of cancer stem cells from adult glioblastoma multiforme.
        Oncogene. 2004; 23: 9392-9400
        • Trosko J.E.
        • Chang C.C.
        • Upham B.L.
        • Tai M.H.
        Ignored hallmarks of carcinogenesis: stem cells and cell–cell communication.
        Ann NY Acad Sci. 2004; 1028: 192-201
        • Wolf H.K.
        • Buslei R.
        • Blumcke I.
        • Wiestler O.D.
        • Pietsch T.
        Neural antigens in oligodendrogliomas and dysembryoplastic neuroepithelial tumors.
        Acta Neurophathol. 1997; 94: 436-443
        • Wharton S.B.
        • Chan K.K.
        • Hamilton F.A.
        • Anderson J.R.
        Expression of neuronal markers in oligodendrogliomas: an immunohistochemical study.
        Neuropath Appl Neurobiol. 1998; 24: 302-308
        • Katsetos C.D.
        • Del V.L.
        • Geddes J.F.
        • et al.
        Localization of the neuronal class III beta-tubulin in oligodendrogliomas: comparison with Ki-67 proliferative index and 1p/19q status.
        J Neuropathol Exp Neurol. 2002; 61: 307-320
        • Dai C.
        • Celestino J.C.
        • Okada Y.
        • Louis D.N.
        • Fuller G.N.
        • Holland E.C.
        PDGF autocrine stimulation dedifferentiates cultured astrocytes and induces oligodendrogliomas and oligoastrocytomas from neural progenitors and astrocytes in vivo.
        Genes Dev. 2001; 15: 1913-1925
        • Bachoo R.M.
        • Maher E.A.
        • Ligon K.L.
        • et al.
        Epidermal growth factor receptor and Ink4a/Arf: convergent mechanisms governing terminal differentiation and transformation along the neural stem cell to astrocyte axis.
        Cancer Cell. 2002; 1: 267-277
        • Uhrbom L.
        • Dai C.
        • Celestino J.C.
        • Rosenblum M.K.
        • Fuller G.N.
        • Holland E.C.
        Ink4a-Arf loss cooperates with KRas activation in astrocytes and neural progenitors to generate glioblastomas of various morphologies depending on activated Akt.
        Cancer Res. 2002; 62: 5551-5558
        • Doetsch F.
        • Caille I.
        • Lim D.A.
        • Garcia-Verdugo J.M.
        • Alvarez-Buylla A.
        Subventricular zone astrocytes are neural stem cells in the adult mammalian brain.
        Cell. 1999; 97: 703-716
        • Kondo T.
        • Raff M.
        Oligodendrocyte precursor cells reprogrammed to become multipoteintial CNS stem cells.
        Science. 2000; 289: 1754-1757
        • Laywell E.D.
        • Rakic P.
        • Kukekov V.G.
        • Holland E.C.
        • Steindler D.A.
        Identification of a multipotent astrocytic stem cell in the immature and adult mouse brain.
        Proc Natl Acad Sci USA. 2000; 97: 13889-13894
        • Gotz M.
        • Malatesta P.
        Radial glial cells as neuronal precursors: a new perspective on the correlation of morphology and lineage restriction in the developing cerebral cortex of mice.
        Brain Res Bull. 2002; 57: 777-788
        • Belachew S.
        • Chittajallu R.
        • Aguirre A.A.
        • et al.
        Postnatal NG2 proteoglycan-expressing progenitor cells are intrinsically multipotent and generate functional neurons.
        J Cell Biol. 2003; 161: 169-186
        • Nunes M.C.
        • Roy N.S.
        • Keyoung H.M.
        • et al.
        Identification and isolation of multipotential neural progenitor cells from the subcortical white matter of the adult human brain.
        Nat Med. 2003; 9: 439-447
        • Kondo T.
        • Raff M.
        Chromatin remodeling and histone modification in the conversion of oligodendrocyte precursors to neural stem cells.
        Genes Dev. 2004; 18: 2963-2972
        • Gottesman M.M.
        • Fojo T.
        • Bates S.E.
        Multidrug resistance in cancer: role of ATP-dependent transporters.
        Nat Rev Cancer. 2002; 2: 48-58
        • Doyle L.A.
        • Yang W.
        • Bruzzo L.V.
        • et al.
        A multidrug resistance transporter from human MCF-7 breast cancer cells.
        Proc Natl Acad Sci USA. 1998; 95: 15665-15670
        • Goodell M.A.
        • Brose K.
        • Paradis G.
        • Conner A.S.
        • Mulligan R.C.
        Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo.
        J Exp Med. 1996; 183: 1797-1806
        • Zhou S.
        • Schuetz J.D.
        • Bunting K.D.
        • et al.
        The ABC transporter Bcrp1/ABCG2 is expressed in a wide variety of stem cells and is a molecular determinant of the side-population phenotype.
        Nat Med. 2001; 7: 1028-1034
        • Zhou S.
        • Morris J.J.
        • Barnes Y.
        • Lan L.
        • Schuetz J.D.
        • Sorrentino B.P.
        Bcrp1 gene expression is required for normal numbers of side population stem cells in mice, and confers relative protection to mitoxantrone in hematopoietic cells in vivo.
        Proc Natl Acad Sci USA. 2002; 17: 12339-12344
        • Reynolds B.A.
        • Weiss S.
        Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system.
        Science. 1992; 255: 1707-1710
        • Lois C.
        • Alvarez-Buylla A.
        Proliferating subventricular zone cells in the adult mammalian forebrain can differentiate into neurons and glia.
        Proc Natl Acad Sci USA. 1993; 90: 2074-2077
        • Barnett S.C.
        • Robertson L.
        • Graham D.
        • Allan D.
        • Rampling R.
        Oligodendrocyte-type-2 astrocyte (O-2A) progenitor cells transformed with c-myc and H-ras form high-grade glioma after stereotactic injection into the rat brain.
        Carcinogenesis. 1998; 19: 1529-1537
        • Uchida N.
        • Buck D.W.
        • He D.
        • et al.
        Direct isolation of human central nervous system stem cells.
        Proc Natl Acad Sci USA. 2000; 97: 14720-14725
        • Rafii S.
        • Lyden D.
        • Benezra R.
        • Hattori K.
        • Heissig B.
        Vascular and haematopoietic stem cells: novel targets for anti-angiogenesis therapy?.
        Nat Rev Cancer. 2002; 2: 826-835
        • Reyes M.
        • Dudek A.
        • Jahagirdar B.
        • Koodie L.
        • Marker P.H.
        • Verfaillie C.M.
        Origin of endothelial progenitors in human postnatal bone marrow.
        J Clin Invest. 2002; 109: 337-346
        • De Palma M.
        • Venneri M.A.
        • Roca C.
        • Naldini L.
        Targeting exogenous genes to tumor angiogenesis by transplantation of genetically modified hematopoietic stem cells.
        Nat Med. 2003; 9: 789-795
        • Takakura N.
        • Watanabe T.
        • Suenobu S.
        • et al.
        A role for hematopoietic stem cells in promoting angiogenesis.
        Cell. 2000; 102: 199-209
        • Aboody K.S.
        • Brown A.
        • Rainov N.G.
        • et al.
        Neural stem cells display extensive tropism for pathology in adult brain: evidence from intracranial gliomas.
        Proc Natl Acad Sci USA. 2000; 97: 12846-12851
        • Pardal R.
        • Clarke M.F.
        • Morrison S.J.
        Applying the principles of stem-cell biology to cancer.
        Nat Rev Cancer. 2003; 3: 895-902
        • Radtke F.
        • Raj K.
        The role of Notch in tumorigenesis: oncogene or tumour suppressor?.
        Nat Rev Cancer. 2003; 3: 756-767
        • Swiatek P.J.
        • Lindsell C.E.
        • del Amo F.F.
        • Weinmaster G.
        • Gridley T.
        Notch1 is essential for postimplantation development in mice.
        Genes Dev. 1994; 8: 707-719
        • Xue Y.
        • Gao X.
        • Lindsell C.E.
        • et al.
        Embryonic lethality and vascular defects in mice lacking the Notch ligand Jagged1.
        Hum Mol Genet. 1999; 8: 723-730
        • Krebs L.T.
        • Xue Y.
        • Norton C.R.
        • et al.
        Notch signaling is essential for vascular morphogenesis in mice.
        Genes Dev. 2000; 14: 1343-1352
        • Tanigaki K.
        • Nogaki F.
        • Takahashi J.
        • Tashiro K.
        • Kurooka H.
        • Honjo T.
        Notch1 and Notch3 instructively restrict bFGF-responsive multipotent neural progenitor cells to an astroglial fate.
        Neuron. 2001; 29: 45-55
        • Hitoshi S.
        • Alexson T.
        • Tropepe V.
        • et al.
        Notch pathway molecules are essential for the maintenance, but not the generation, of mammalian neural stem cells.
        Genes Dev. 2002; 16: 846-858
        • Ishibashi M.
        • Ang S.L.
        • Shiota K.
        • Nakanishi S.
        • Kageyama R.
        • Guillemot F.
        Targeted disruption of mammalian hairy and Enhancer of split homolog-1 (HES-1) leads to up-regulation of neural helix-loop-helix factors, premature neurogenesis, and severe neural tube defects.
        Genes Dev. 1995; 9: 3136-3148
        • Hojo M.
        • Ohtsuka T.
        • Hashimoto N.
        • Gradwohl G.
        • Guillemot F.
        • Kageyama R.
        Glial cell fate specification modulated by the bHLH gene Hes5 in mouse retina.
        Development. 2000; 127: 2515-2522
        • Pahlman S.
        • Stockhausen M.T.
        • Fredlund E.
        • Axelson H.
        Notch signaling in neuroblastoma.
        Semin Cancer Biol. 2004; 14: 365-373
        • Purow B.W.
        • Haque R.M.
        • Noel M.W.
        • et al.
        Expression of Notch-1 and its ligands, Delta-like-1 and Jagged-1, is critical for glioma cell survival and proliferation.
        Cancer Res. 2005; 65: 2353-2363
        • Logan C.Y.
        • Nusse R.
        The Wnt signaling pathway in development and disease.
        Annu Rev Cell Dev Biol. 2004; 20: 781-810
        • Moon R.T.
        • Kohn A.D.
        • De Ferrari G.V.
        • Kaykas A.
        WNT and beta-catenin signalling: diseases and therapies.
        Nat Rev Genet. 2004; 5: 691-701
        • Reya T.
        • Clevers H.
        Wnt signalling in stem cells and cancer.
        Nature. 2005; 434: 843-850
        • Ikeya M.
        • Lee S.M.
        • Johnson J.E.
        • McMahon A.P.
        • Takada S.
        Wnt signalling required for expansion of neural crest and CNS progenitors.
        Nature. 1999; 389: 966-970
        • Lee S.M.K.
        • Tole S.
        • Grove E.
        • McMahon A.P.
        A local Wnt-3a signal is required for development of the mammalian hippocampus.
        Development. 2000; 197: 457-467
        • Kim A.S.
        • Lowenstein D.H.
        • Pleasure S.J.
        Wnt receptors and Wnt inhibitors are expressed in gradients in the developing telencephalon.
        Mech Dev. 2001; 103: 167-172
        • Chenn A.
        • Walsh C.A.
        Regulation of cerebral cortical size by control of cell cycle exit in neural precursors.
        Science. 2002; 297: 365-369
        • McMahon A.P.
        • Bradley A.
        The Wnt-1 (int-1) proto-oncogene is required for development of a large region of the mouse brain.
        Cell. 1990; 62: 1073-1085
        • Brault V.
        • Moore R.
        • Kutsch S.
        • et al.
        Inactivation of the beta-catenin gene by Wnt1-Cre-mediated deletion results in dramatic brain malformation and failure of craniofacial development.
        Development. 2001; 128: 1253-1264
        • Zurawel R.H.
        • Chiappa S.A.
        • Allen C.
        • Raffel C.
        Sporadic medulloblastomas contain oncogenic beta-catenin mutations.
        Cancer Res. 1998; 58: 896-899
        • Dahmen R.P.
        • Koch A.
        • Denkhaus D.
        • et al.
        Deletions of AXIN1, a component of the WNT/wingless pathway, in sporadic medulloblastomas.
        Cancer Res. 2001; 61: 7039-7043
        • Ruiz i Altaba A.
        • Palma V.
        • Dahmane N.
        Hedgehog-Gli signalling and the growth of the brain.
        Nat Rev Neurosci. 2002; 3: 24-33
        • Pasca di Magliano M.
        • Hebrok M.
        Hedgehog signalling in cancer formation and maintenance.
        Nat Rev Cancer. 2003; 3: 903-911
        • Ding Q.
        • Motoyama J.
        • Gasca S.
        • et al.
        Diminished Sonic hedgehog signaling and lack of floor plate differentiation in Gli2 mutant mice.
        Development. 1998; 125: 2533-2543
        • Matise M.P.
        • Epstein D.J.
        • Park H.L.
        • Platt K.A.
        • Joyner A.L.
        Gli2 is required for induction of floor plate and adjacent cells, but not most ventral neurons in the mouse central nervous system.
        Development. 1998; 125: 2759-2770
        • Park H.L.
        • Bai C.
        • Platt K.A.
        • et al.
        Mouse Gli1 mutants are viable but have defects in SHH signaling in combination with a Gli2 mutation.
        Development. 2000; 127: 1593-1605
        • Palma V.
        • Ruiz i Altaba A.
        Hedgehog-GLI signaling regulates the behavior of cells with stem cell properties in the developing neocortex.
        Development. 2004; 131: 337-345
        • Machold R.
        • Hayashi S.
        • Rutlin M.
        • et al.
        Sonic hedgehog is required for progenitor cell maintenance in telencephalic stem cell niches.
        Neuron. 2003; 39: 937-950
        • Ruiz i Altaba A.
        • Sanchez P.
        • Dahmane N.
        Gli and hedgehog in cancer: tumours, embryos and stem cells.
        Nat Rev Cancer. 2002; 2: 361-372
        • Pasca di Magliano M.
        • Hebrok M.
        Hedgehog signalling in cancer formation and maintenance.
        Nat Rev Cancer. 2003; 3: 903-911
        • Goodrich L.V.
        • Milenkovic L.
        • Higgins K.M.
        • Scott M.P.
        Altered neural cell fates and medulloblastoma in mouse patched mutants.
        Science. 1997; 277: 1109-1113
        • Dahmane N.
        • Sanchez P.
        • Gitton Y.
        • et al.
        The sonic hedgehog-Gli pathway regulates dorsal brain growth and tumorigenesis.
        Development. 2001; 128: 5201-5212
        • Berman D.M.
        • Karhadkar S.S.
        • Hallahan A.R.
        • et al.
        Medulloblastoma growth inhibition by hedgehog pathway blockade.
        Science. 2002; 297: 1559-1561
        • Pavlickova P.
        • Schneider E.M.
        • Hug H.
        Advances in recombinant antibody microarrays.
        Clin Chim Acta. 2004; 343: 17-35