Advertisement

Stem cell plasticity and tumour formation

      Abstract

      Stem cell plasticity refers to the ability of certain stem cells to switch lineage determination and generate unexpected cell types. This review applies largely to bone marrow cells (BMCs), which appear to contribute positively to the regeneration of several damaged non-haematopoietic tissues. This beneficial effect on regeneration may be a direct result of BMCs giving rise to organ parenchymal cells. Alternatively, it could be due to BMCs fusing with existing parenchymal cells, or providing paracrine growth factor support, or contributing to neovascularisation. In the context of oncology, BMC derivation of the tumour stroma and vasculature has profound biological and therapeutic implications, and there are several examples of carcinomas seemingly being derived from BMCs.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to European Journal of Cancer
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Sanai N.
        • Tramontin A.D.
        • Quinones-Hinojosa A.
        • et al.
        Unique astrocyte ribbon in adult human brain contains neural stem cells but lacks chain migration.
        Nature. 2004; 427: 740-744
        • Beltrami A.P.
        • Barlucchi L.
        • Torella D.
        • et al.
        Adult cardiac stem cells are multipotent and support myocardial regeneration.
        Cell. 2003; 114: 763-776
        • Silberg D.G.
        • Sullivan J.
        • Kang E.
        Cdx2 ectopic expression induces gastric intestinal metaplasia in transgenic mice.
        Gastroenterology. 2002; 122: 689-696
        • Beck F.
        • Chawengsaksophak K.
        • Luckett J.
        • et al.
        A study of regional gut endoderm potency by analysis of Cdx2 null mutant chimaeric mice.
        Dev Biol. 2003; 255: 399-406
        • Hashimoto N.
        • Jin H.
        • Liu T.
        • Chensue S.W.
        • Phan S.H.
        Bone marrow-derived progenitor cells in pulmonary fibrosis.
        J Clin Invest. 2004; 113: 243-252
        • Forbes S.J.
        • Russo F.P.
        • Rey V.
        • et al.
        A significant proportion of myofibroblasts are of bone marrow origin in human liver fibrosis.
        Gastroenterology. 2004; 126: 955-963
        • Direkze N.C.
        • Hodivala-Dilke K.
        • Jeffery R.
        • et al.
        Bone marrow contribution to tumor-associated myofibroblasts and fibroblasts.
        Cancer Res. 2004; 64: 8942-8945
        • Stenback F.
        • Peto R.
        • Shubik P.
        Initiation and promotion at different ages and doses in 2200 mice. I. Methods, and the apparent persistence of initiated cells.
        Br J Cancer. 1981; 44: 1-14
        • Reya T.
        • Morrison S.J.
        • Clarke M.F.
        • Weissman I.L.
        Stem cells, cancer, and cancer stem cells.
        Nature. 2001; 414: 105-111
        • Bonnet D.
        • Dick J.E.
        Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell.
        Nat Med. 1997; 3: 730-737
        • Al-Hajj M.
        • Wicha M.S.
        • Benito-Hernandez A.
        • Morrison S.J.
        • Clarke M.F.
        Prospective identification of tumorigenic breast cancer cells.
        Proc Natl Acad Sci USA. 2003; 100: 3983-3988
        • Singh S.K.
        • Clarke I.D.
        • Terasaki M.
        • et al.
        Identification of a cancer stem cell in human brain tumors.
        Cancer Res. 2003; 63: 5821-5828
        • Singh S.K.
        • Hawkins C.
        • Clarke I.D.
        • et al.
        Identification of human brain tumour initiating cells.
        Nature. 2004; 432: 396-401
        • Alison M.R.
        • Poulsom R.
        • Otto W.R.
        • et al.
        Recipes for adult stem cell plasticity: fusion cuisine or readymade?.
        J Clin Path. 2004; 57: 113-120
        • Tran S.D.
        • Pillemer S.R.
        • Dutra A.
        • et al.
        Differentiation of human bone marrow-derived cells into buccal epithelial cells in vivo: a molecular analytical study.
        Lancet. 2003; 361: 1084-1088
        • Ianus A.
        • Holz G.G.
        • Theise N.D.
        • et al.
        In vivo derivation of glucose-competent pancreatic endocrine cells from bone marrow without evidence of cell fusion.
        J Clin Invest. 2003; 111: 843-850
        • Lagasse E.
        • Connors H.
        • Al-Dhalimy M.
        • et al.
        Purified hematopoietic stem cells can differentiate into hepatocytes in vivo.
        Nature Med. 2000; 6: 1229-1234
        • Wang X.
        • Willenbring H.
        • Akkari Y.
        • et al.
        Cell fusion is the principal source of bone-marrow-derived hepatocytes.
        Nature. 2003; 422: 897-901
        • Willenbring H.
        • Bailey A.S.
        • Foster M.
        • et al.
        Myelomonocytic cells are sufficient for therapeutic cell fusion in liver.
        Nat Med. 2004; 10: 744-748
        • Camargo F.D.
        • Finegold M.
        • Goodell M.A.
        Hematopoietic myelomonocytic cells are the major source of hepatocyte fusion partners.
        J Clin Invest. 2004; 113: 1266-1270
        • Alvarez-Dolado M.
        • Pardal R.
        • Garcia-Verdugo J.M.
        • et al.
        Fusion of bone-marrow-derived cells with Purkinje neurons, cardiomyocytes and hepatocytes.
        Nature. 2003; 425: 968-973
        • Harris R.G.
        • Herzog E.L.
        • Bruscia E.M.
        • Grove J.E.
        • Van Arnam J.S.
        • Krause D.S.
        Lack of a fusion requirement for development of bone marrow-derived epithelia.
        Science. 2004; 305: 90-93
        • Shen C.N.
        • Slack J.M.
        • Tosh D.
        Molecular basis of transdifferentiation of pancreas to liver.
        Nat Cell Biol. 2000; 2: 879-887
        • Jang Y.Y.
        • Collector M.I.
        • Baylin S.B.
        • Diehl A.M.
        • Sharkis S.J.
        Hematopoietic stem cells convert into liver cells within days without fusion.
        Nat Cell Biol. 2004; 6: 532-539
        • Bjornson C.
        • Rietze R.
        • Reynolds B.
        • et al.
        Turning brain into blood: a hematopoietic fate adopted by neural stem cells in vivo.
        Science. 1999; 283: 534-537
        • Morshead C.M.
        • Benveniste P.
        • Iscove N.N.
        • et al.
        Hematopoietic competence is a rare property of neural stem cells that may depend on genetic and epigenetic alterations.
        Nat Med. 2002; 8: 268-273
        • Alison M.R.
        • Vig P.
        • Russo F.
        • et al.
        Hepatic stem cells: from inside and outside the liver?.
        Cell Prolif. 2004; 37: 1-21
        • Orlic D.
        • Kajstura J.
        • Chimenti S.
        • et al.
        Bone marrow cells regenerate infarcted myocardium.
        Nature. 2001; 410: 701-704
        • Murry C.E.
        • Soonpaa M.H.
        • Reinecke H.
        • et al.
        Haematopoietic stem cells do not transdifferentiate into cardiac myocytes in myocardial infarcts.
        Nature. 2004; 428: 664-668
        • Balsam L.B.
        • Wagers A.J.
        • Christensen J.L.
        • Kofidis T.
        • Weissman I.L.
        • Robbins R.C.
        Haematopoietic stem cells adopt mature haematopoietic fates in ischaemic myocardium.
        Nature. 2004; 428: 668-673
        • Kajstura J.
        • Rota M.
        • Whang B.
        • et al.
        Bone marrow cells differentiate in cardiac cell lineages after infarction independently of cell fusion.
        Circ Res. 2005; 96: 127-137
        • Perin E.C.
        • Dohmann H.F.
        • Borojevic R.
        • et al.
        Transendocardial, autologous bone marrow cell transplantation for severe, chronic ischemic heart failure.
        Circulation. 2003; 107: 2294-2302
        • Wollert K.C.
        • Meyer G.P.
        • Lotz J.
        • et al.
        Intracoronary autologous bone-marrow cell transfer after myocardial infarction: the BOOST randomised controlled clinical trial.
        Lancet. 2004; 364: 141-148
        • Hess D.
        • Li L.
        • Martin M.
        • et al.
        Bone marrow-derived stem cells initiate pancreatic regeneration.
        Nat Biotechnol. 2003; 21: 763-770
        • Mezey E.
        • Chandross K.
        • Harta G.
        • et al.
        Turning blood into brain: cells bearing neuronal antigens generated in vivo from bone marrow.
        Science. 2000; 290: 1779-1782
        • Mezey E.
        • Key S.
        • Vogelsang G.
        • et al.
        Transplanted bone marrow generates new neurons in human brains.
        Proc Natl Acad Sci USA. 2003; 100: 1364-1369
        • Castro R.F.
        • Jackson K.A.
        • Goodell M.A.
        • et al.
        Failure of bone marrow cells to transdifferentiate into neural cells in vivo.
        Science. 2002; 297: 1299
        • Mezey E.
        • Nagy A.
        • Szalayova I.
        • et al.
        Comment on ‘Failure of bone marrow cells to transdifferentiate into neural cells in vivo’.
        Science. 2003; 299 ([author reply 1184]): 1184
        • Massengale M.
        • Wagers A.J.
        • Vogel H.
        • Weissman I.L.
        Hematopoietic cells maintain hematopoietic fates upon entering the brain.
        J Exp Med. 2005; 201: 1579-1589
        • Bonilla S.
        • Silva A.
        • Valdes L.
        • Geijo E.
        • Garcia-Verdugo J.M.
        • Martinez S.
        Functional neural stem cells derived from adult bone marrow.
        Neuroscience. 2005; 133: 85-95
        • Rabb H.
        Paracrine and differentiation mechanisms underlying stem cell therapy for the damaged kidney.
        Am J Physiol Renal Physiol. 2005; 289: F29-F30
        • Ritz E.
        Amelioration of acute renal failure by stem cell therapy – paracrine secretion versus transdifferentiation into resident cells.
        J Am Soc Nephrol. 2005; 16: 1153-1155
        • Morigi M.
        • Imberti B.
        • Zoja C.
        • et al.
        Mesenchymal stem cells are renotropic, helping to repair the kidney and improve function in acute renal failure.
        J Am Soc Nephrol. 2004; 15: 1794-1804
        • Togel F.
        • Hu Z.
        • Weiss K.
        • Isaac J.
        • Lange C.
        • Westenfelder C.
        Administered mesenchymal stem cells protect against ischemic acute renal failure through differentiation-independent mechanisms.
        Am J Physiol Renal Physiol. 2005; 289: F31-F42
        • Fang T.-C.
        • Alison M.R.
        • Cook H.T.
        • Jeffery R.
        • Wright N.A.
        • Poulsom R.
        Proliferation of bone marrow-derived cells contributes to regeneration after folic acid-induced acute tubular injury.
        J Am Soc Nephrol. 2005; 16: 1723-1732
        • Krause D.S.
        • Theise N.D.
        • Collector M.I.
        • et al.
        Multi-organ, multi-lineage engraftment by a single bone marrow-derived stem cell.
        Cell. 2001; 105: 369-377
        • Wagers A.M.
        • Sherwood R.I.
        • Christensen J.L.
        • et al.
        Little evidence for developmental plasticity of adult hematopoietic stem cells.
        Science. 2002; 297: 2256-2259
        • Korbling M.
        • Katz R.L.
        • Khanna A.
        • et al.
        Hepatocytes and epithelial cells of donor origin in recipients of peripheral-blood stem cells.
        New Engl J Med. 2002; 346: 738-746
        • Okamoto R.
        • Yajima T.
        • Yamazaki M.
        • et al.
        Damaged epithelia regenerated by bone marrow-derived cells in the human gastrointestinal tract.
        Nat Med. 2002; 8: 1011-1017
        • Matsumoto T.
        • Okamoto R.
        • Yajima T.
        • et al.
        Increase of bone marrow-derived secretory lineage epithelial cells during regeneration in the human intestine.
        Gastroenterology. 2005; 128: 1851-1867
        • Borue X.
        • Lee S.
        • Grove J.
        • et al.
        Bone marrow-derived cells contribute to epithelial engraftment during wound healing.
        Am J Pathol. 2004; 165: 1767-1772
        • Brittan M.
        • Braun K.M.
        • Reynolds L.E.
        • et al.
        Bone marrow cells engraft within the epidermis and proliferate in vivo with no evidence of cell fusion.
        J Path. 2005; 205: 1-13
        • Houghton J.
        • Wang T.C.
        Helicobacter pylori and gastric cancer: a new paradigm for inflammation-associated epithelial cancers.
        Gastroenterology. 2005; 128: 1567-1578
        • Houghton J.
        • Stoicov C.
        • Nomura S.
        • et al.
        Gastric cancer originating from bone marrow-derived cells.
        Science. 2004; 306: 1568-1571
        • Aractingi S.
        • Kanitakis J.
        • Euvrard S.
        • et al.
        Skin carcinoma arising from donor cells in a kidney transplant recipient.
        Cancer Res. 2005; 65: 1755-1760
        • Ogle B.M.
        • Cascalho M.
        • Platt J.L.
        Biological implications of cell fusion.
        Nature Reviews Mol Cell Biol. 2005; 6: 567-574
        • Iwami Y.
        • Masuda H.
        • Asahara T.
        Endothelial progenitor cells: past, state of the art, and future.
        J Cell Mol Med. 2004; 8: 488-497
        • Hristov M.
        • Weber C.
        Endothelial progenitor cells: characterization, pathophysiology, and possible clinical relevance.
        J Cell Mol Med. 2004; 8: 498-508
        • Khakoo A.Y.
        • Finkel T.
        Endothelial progenitor cells.
        Annu Rev Med. 2005; 56: 79-101
        • Davidoff A.M.
        • Ng C.Y.
        • Brown P.
        • et al.
        Bone marrow-derived cells contribute to tumor neovasculature and, when modified to express an angiogenesis inhibitor, can restrict tumor growth in mice.
        Clin Cancer Res. 2001; 7: 2870-2879
        • Dwenger A.
        • Rosenthal F.
        • Machein M.
        • Waller C.
        • Spyridonidis A.
        Transplanted bone marrow cells preferentially home to the vessels of in situ generated murine tumors rather than of normal organs.
        Stem Cells. 2004; 22: 86-92
        • Peters B.A.
        • Diaz L.A.
        • Polyak K.
        • et al.
        Contribution of bone marrow-derived endothelial cells to human tumor vasculature.
        Nat Med. 2005; 11: 261-262
        • Powell D.W.
        • Mifflin R.C.
        • Valentich J.D.
        • Crowe S.E.
        • Saada J.I.
        • West A.B.
        Myofibroblasts. I. Paracrine cells important in health and disease.
        Am J Physiol. 1999; 277: C1-C9
        • Direkze N.C.
        • Forbes S.J.
        • Brittan M.
        • et al.
        Multiple organ engraftment by bone-marrow-derived myofibroblasts and fibroblasts in bone-marrow transplanted mice.
        Stem Cells. 2003; 21: 514-520
        • Mori L.
        • Bellini A.
        • Stacey M.A.
        • Schmidt M.
        • Mattoli S.
        Fibrocytes contribute to the myofibroblast population in wounded skin and originate from the bone marrow.
        Exp Cell Res. 2005; 304: 81-90
        • Epperly M.W.
        • Guo H.
        • Gretton J.E.
        • Greenberger J.S.
        Bone marrow origin of myofibroblasts in irradiation pulmonary fibrosis.
        Am J Respir Cell Mol Biol. 2003; 29: 213-224
        • Brittan M.
        • Chance V.
        • Elia G.
        • et al.
        A regenerative role for bone marrow following experimental colitis: contribution to neovasculogenesis and myofibroblasts.
        Gastroenterology. 2005; 128: 1984-1995
        • Brittan M.
        • Hunt T.
        • Jeffery R.
        • et al.
        Bone marrow derivation of pericryptal myofibroblasts in the mouse and human small intestine and colon.
        Gut. 2002; 50: 752-757
        • Ishii G.
        • Sangai T.
        • et al.
        Bone-marrow-derived myofibroblasts contribute to the cancer-induced stromal reaction.
        Biochem Biophys Res Commun. 2003; 309: 232-240
        • Sangai T.
        • Ishii G.
        • Kodama K.
        • et al.
        Effect of differences in cancer cells and tumor growth sites on recruiting bone marrow-derived endothelial cells and myofibroblasts in cancer-induced stroma.
        Int J Cancer. 2005; 115: 885-892
        • Prockop D.J.
        Marrow stromal cells as stem cells for nonhematopoietic tissues.
        Science. 1997; 276: 71-74
        • Abe R.
        • Donnelly S.C.
        • Peng T.
        • Bucala R.
        • Metz C.
        Peripheral blood fibrocytes: differentiation pathway and migration to wound sites.
        J Immunol. 2001; 166: 7556-7562
        • Neaud V.
        • Faouzi S.
        • Guirouilh J.
        • et al.
        Human hepatic myofibroblasts increase invasiveness of hepatocellular carcinoma cells: evidence for a role of hepatocyte growth factor.
        Hepatology. 1997; 26: 1458-1466
        • von Schweinitz D.
        • Faundez A.
        • Teichmann B.
        • et al.
        Hepatocyte growth-factor-scatter factor can stimulate post-operative tumor-cell proliferation in childhood hepatoblastoma.
        Int J Cancer. 2000; 85: 151-159
        • Ohuchida K.
        • Mizumoto K.
        • Murakami M.
        • et al.
        Radiation to stromal fibroblasts increases invasiveness of pancreatic cancer cells through tumor stromal interactions.
        Cancer Res. 2004; 64: 3215-3222
        • Ng I.O.
        • Lai E.C.
        • Ng M.M.
        • Fan S.T.
        Tumor encapsulation in hepatocellular carcinoma. A pathologic study of 189 cases.
        Cancer. 1992; 70: 45-49
        • Ayala G.
        • Tuxhorn J.A.
        • Wheeler T.M.
        • et al.
        Reactive stroma as a predictor of biochemical-free recurrence in prostate cancer.
        Clin Cancer Res. 2003; 9: 4792-4801
        • Ioachim E.
        • Michael M.
        • Stavropoulos N.E.
        • Kitsiou E.
        • Salmas M.
        • Malamou Mitsi V.
        A clinicopathological study of the expression of extracellular matrix components in urothelial carcinoma.
        BJU Int. 2005; 95: 655-659
        • Poulsom R.
        • Hanby A.M.
        • Pignatelli M.
        • et al.
        Expression of gelatinase A and TIMP-2 mRNAs in desmoplastic fibroblasts in both mammary carcinomas and basal cell carcinomas of the skin.
        J Clin Pathol. 1993; 46: 429-436
        • Poulsom R.
        • Pignatelli M.
        • Stetler-Stevenson W.G.
        • et al.
        Stromal expression of 72 kda type IV collagenase (MMP-2) and TIMP-2 mRNAs in colorectal neoplasia.
        Am J Pathol. 1992; 141: 389-396
        • Studeny M.
        • Marini F.C.
        • Champlin R.E.
        • Zompetta C.
        • Fidler I.J.
        • Andreeff M.
        Bone marrow-derived mesenchymal stem cells as vehicles for interferon-beta delivery into tumors.
        Cancer Res. 2002; 62: 3603-3608
        • Studeny M.
        • Marini F.C.
        • Dembinski J.L.
        • et al.
        Mesenchymal stem cells: potential precursors for tumor stroma and targeted-delivery vehicles for anticancer agents.
        J Natl Cancer Inst. 2004; 96: 1593-1603
        • Desmouliere A.
        • Guyot C.
        • Gabbiani G.
        The stroma reaction myofibroblast: a key player in the control of tumor cell behavior.
        Int J Dev Biol. 2004; 48: 509-517
        • Kogler G.
        • Sensken S.
        • Airey J.A.
        • et al.
        A new human somatic stem cell from placental cord blood with intrinsic pluripotent differentiation potential.
        J Exp Med. 2004; 200: 123-135
        • Mitchell K.E.
        • Weiss M.L.
        • Mitchell B.M.
        • et al.
        Matrix cells from Wharton’s jelly form neurons and glia.
        Stem Cells. 2003; 21: 50-60
        • Jiang Y.
        • Jahagirdar B.N.
        • Reinhardt R.L.
        • et al.
        Pluripotency of mesenchymal stem cells derived from adult marrow.
        Nature. 2002; 418: 41-49
        • Kucia M.
        • Ratajczak J.
        • Ratajczak M.Z.
        Are bone marrow stem cells plastic or heterogenous – that is the question.
        Exp Hematol. 2005; 33: 613-623
        • Kucia M.
        • Reca R.
        • Jala V.R.
        • Dawn B.
        • Ratajczak J.
        • Ratajczak M.Z.
        Bone marrow as a home of heterogenous populations of nonhematopoietic stem cells.
        Leukemia. 2005; 19: 1118-1127
        • Cao Y.
        • Sun Z.
        • Liao L.
        • Meng Y.
        • Han Q.
        • Zhao R.C.
        Human adipose tissue-derived stem cells differentiate into endothelial cells in vitro and improve postnatal neovascularization in vivo.
        Biochem Biophys Res Commun. 2005; 332: 370-379
        • Fernandes K.J.
        • McKenzie I.A.
        • Mill P.
        • et al.
        A dermal niche for multipotent adult skin-derived precursor cells.
        Nat Cell Biol. 2004; 6: 1082-1093
        • Prindull G.
        • Zipori D.
        Environmental guidance of normal and tumour cell plasticity: epithelial mesenchymal transitions as a paradigm.
        Blood. 2004; 103: 2892-2899
        • Thompson E.W.
        • Newgreen D.F.
        • Tarin D.
        Carcinoma invasion and metastasis: a role for epithelial-mesenchymal transition.
        Cancer Res. 2005; 65: 5991-5995
        • Ahmad A.
        • Hanby A.M.
        • Dublin E.A.
        • et al.
        Stromelysin 3: an independent prognostic factor for relapse-free survival in node-positive breast cancer and demonstration of novel breast carcinoma cell expression.
        Am J Pathol. 1998; 152: 721-728
        • Tarin D.
        • Thompson E.W.
        • Newgreen D.F.
        The fallacy of epithelial mesenchymal transition in neoplasia.
        Cancer Res. 2005; 65 ([discussion 6000–1]): 5996-6000
        • Johnson J.
        • Bagley J.
        • Skaznik-Wikiel M.
        • et al.
        Oocyte generation in adult Mammalian ovaries by putative germ cells in bone marrow and peripheral blood.
        Cell. 2005; 122: 303-315