Therapeutic potential of cytokine and chemokine antagonists in cancer therapy


      A new paradigm is becoming widely accepted, that chronic inflammation, driven in part by chemokines and cytokines at the site of a tumour, may facilitate tumour progression instead of promoting anti-tumour immunity. Tumours and activated stromal cells secrete pro-inflammatory chemokines and cytokines that act either directly or indirectly through stimulation of the vascular endothelium to recruit leukocytes to the tumour. After activation, these tumour-associated leukocytes release angiogenic factors, mitogens, proteolytic enzymes, and chemotactic factors, recruiting more inflammatory cells and stimulating angiogenesis to sustain tumour growth and facilitate tumour metastasis. Breaking this cycle by inhibiting targets such as cytokines, chemokines and other inflammatory mediators, either alone, or more realistically, in combination with other therapies, such as anti-angiogenic or cytotoxic agents, may provide highly efficacious therapeutic regimens for the treatment of malignancies. This article reviews anti-cytokine and anti-chemokine therapies being pursued in cancer, and discusses in more detail anti-tumour necrosis factor-α (TNF) approaches.


      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to European Journal of Cancer
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Balkwill F.
        Tumor necrosis factor or tumor promoting factor?.
        Cytokine Growth Factor Rev. 2002; 13: 135-141
        • Anderson G.M.
        • Nakada M.T.
        • DeWitte M.
        Tumor necrosis factor-alpha in the pathogenesis and treatment of cancer.
        Curr Opin Pharmacol. 2004; 4: 314-320
        • Szlosarek P.W.
        • Balkwill F.R.
        Tumour necrosis factor alpha: a potential target for the therapy of solid tumours.
        Lancet Oncol. 2003; 4: 565-573
        • Dranoff G.
        Cytokines in cancer pathogenesis and cancer therapy.
        Nat Rev Cancer. 2004; 4: 11-22
        • Arnott C.H.
        • Scott K.A.
        • Moore R.J.
        • et al.
        Tumour necrosis factor-alpha mediates tumour promotion via a PKC alpha- and AP-1-dependent pathway.
        Oncogene. 2002; 21: 4728-4738
        • Scott K.A.
        • Moore R.J.
        • Arnott C.H.
        • et al.
        An anti-tumor necrosis factor-alpha antibody inhibits the development of experimental skin tumors.
        Mol Cancer Ther. 2003; 2: 445-451
        • Arnott C.H.
        • Scott K.A.
        • Moore R.J.
        • Robinson S.C.
        • Thompson R.G.
        • Balkwill F.R.
        Expression of both TNF-alpha receptor subtypes is essential for optimal skin tumour development.
        Oncogene. 2004; 23: 1902-1910
        • Luo J.L.
        • Maeda S.
        • Hsu L.C.
        • Yagita H.
        • Karin M.
        Inhibition of NF-kappaB in cancer cells converts inflammation-induced tumor growth mediated by TNFalpha to TRAIL-mediated tumor regression.
        Cancer Cell. 2004; 6: 297-305
        • Mantovani G.
        • Maccio A.
        • Mura L.
        • et al.
        Serum levels of leptin and proinflammatory cytokines in patients with advanced-stage cancer at different sites.
        J Mol Med. 2000; 78: 554-561
        • Karayiannakis A.J.
        • Syrigos K.N.
        • Polychronidis A.
        • Pitiakoudis M.
        • Bounovas A.
        • Simopoulos K.
        Serum levels of tumor necrosis factor-alpha and nutritional status in pancreatic cancer patients.
        Anticancer Res. 2001; 21: 1355-1358
        • Yoshida N.
        • Ikemoto S.
        • Narita K.
        • et al.
        Interleukin-6, tumour necrosis factor alpha and interleukin-1beta in patients with renal cell carcinoma.
        Br J Cancer. 2002; 86: 1396-1400
        • Leek R.D.
        • Landers R.
        • Fox S.B.
        • Ng F.
        • Harris A.L.
        • Lewis C.E.
        Association of tumour necrosis factor alpha and its receptors with thymidine phosphorylase expression in invasive breast carcinoma.
        Br J Cancer. 1998; 77: 2246-2251
        • Partanen R.
        • Koskinen H.
        • Hemminki K.
        Tumour necrosis factor-alpha (TNF-alpha) in patients who have asbestosis and develop cancer.
        Occup Environ Med. 1995; 52: 316-319
        • Pfitzenmaier J.
        • Vessella R.
        • Higano C.S.
        • Noteboom J.L.
        • Wallace Jr., D.
        • Corey E.
        Elevation of cytokine levels in cachectic patients with prostate carcinoma.
        Cancer. 2003; 97: 1211-1216
        • Nakashima J.
        • Tachibana M.
        • Ueno M.
        • Miyajima A.
        • Baba S.
        • Murai M.
        Association between tumor necrosis factor in serum and cachexia in patients with prostate cancer.
        Clin Cancer Res. 1998; 4: 1743-1748
        • Bossola M.
        • Muscaritoli M.
        • Bellantone R.
        • et al.
        Serum tumour necrosis factor-alpha levels in cancer patients are discontinuous and correlate with weight loss.
        Eur J Clin Invest. 2000; 30: 1107-1112
        • von Biberstein S.E.
        • Spiro J.D.
        • Lindquist R.
        • Kreutzer D.L.
        Enhanced tumor cell expression of tumor necrosis factor receptors in head and neck squamous cell carcinoma.
        Am J Surg. 1995; 170: 416-422
        • Ariapart P.
        • Bergstedt-Lindqvist S.
        • van Harmelen V.
        • Permert J.
        • Wang F.
        • Lundkvist I.
        Resection of pancreatic cancer normalizes the preoperative increase of tumor necrosis factor alpha gene expression.
        Pancreatology. 2002; 2: 491-494
        • Michalaki V.
        • Syrigos K.
        • Charles P.
        • Waxman J.
        Serum levels of IL-6 and TNF-alpha correlate with clinicopathological features and patient survival in patients with prostate cancer.
        Br J Cancer. 2004; 90: 2312-2316
        • Tsimberidou A.M.
        • Giles F.J.
        TNF-alpha targeted therapeutic approaches in patients with hematologic malignancies.
        Expert Rev Anticancer Ther. 2002; 2: 277-286
        • Liotta L.A.
        • Kohn E.C.
        • Petricoin E.F.
        Clinical proteomics: personalized molecular medicine.
        JAMA. 2001; 286: 2211-2214
        • Ferrajoli A.
        • Keating M.J.
        • Manshouri T.
        • et al.
        The clinical significance of tumor necrosis factor-alpha plasma level in patients having chronic lymphocytic leukemia.
        Blood. 2002; 100: 1215-1219
        • Stasi R.
        • Amadori S.
        • Newland A.C.
        • Provan D.
        Infliximab chimeric antitumor necrosis factor-a monoclonal antibody as potential treatment for myelodysplastic syndromes.
        Leuk Lymphoma. 2005; 46: 509-516
        • Stasi R.
        • Amadori S.
        Infliximab chimaeric anti-tumour necrosis factor alpha monoclonal antibody treatment for patients with myelodysplastic syndromes.
        Br J Haematol. 2002; 116: 334-337
      1. Raza A, Lisak LA, Tahir S, et al. Hematologic improvement in response to anti-tumor necrosis factor (TNF) therapy with Remicade® in patients with myelodysplastic syndromes (MDS). In: ASH 44th annual meeting, 6–10 December 2002, Philadelphia, PA.

        • Deeg H.J.
        • Jiang P.Y.
        • Holmberg L.A.
        • Scott B.
        • Petersdorf E.W.
        • Appelbaum F.R.
        Hematologic responses of patients with MDS to antithymocyte globulin plus etanercept correlate with improved flow scores of marrow cells.
        Leuk Res. 2004; 28: 1177-1180
        • Du Bois J.S.
        • Trehu E.G.
        • Mier J.W.
        • et al.
        Randomized placebo-controlled clinical trial of high-dose interleukin-2 in combination with a soluble p75 tumor necrosis factor receptor immunoglobulin G chimera in patients with advanced melanoma and renal cell carcinoma.
        J Clin Oncol. 1997; 15: 1052-1062
        • Eisen T.
        • Boshoff C.
        • Mak I.
        • et al.
        Continuous low dose thalidomide: a phase II study in advanced melanoma, renal cell, ovarian and breast cancer.
        Br J Cancer. 2000; 82: 812-817
        • Turk B.E.
        • Jiang H.
        • Liu J.O.
        Binding of thalidomide to alpha1-acid glycoprotein may be involved in its inhibition of tumor necrosis factor alpha production.
        Proc Natl Acad Sci USA. 1996; 93: 7552-7556
      2. Maisey NR, Hall K, Lee C, et al. Infliximab: A phase II trial of the tumour necrosis factor (TNFa) monoclonal antibody in patients with advanced renal cell cancer (RCC). In: 40th ASCO annual meeting proceedings, 5–8 June 2004, New Orleans, LA.

        • Dela Cruz J.S.
        • Huang T.H.
        • Penichet M.L.
        • Morrison S.L.
        Antibody-cytokine fusion proteins: innovative weapons in the war against cancer.
        Clin Exp Med. 2004; 4: 57-64
        • Madhusudan S.
        • Foster M.
        • Muthuramalingam S.R.
        • et al.
        A phase II study of etanercept (Enbrel), a tumor necrosis factor alpha inhibitor in patients with metastatic breast cancer.
        Clin Cancer Res. 2004; 10: 6528-6534
        • Singhal S.
        • Mehta J.
        • Desikan R.
        • et al.
        Antitumor activity of thalidomide in refractory multiple myeloma.
        N Engl J Med. 1999; 341: 1565-1571
        • Fine H.A.
        • Figg W.D.
        • Jaeckle K.
        • et al.
        Phase II trial of the antiangiogenic agent thalidomide in patients with recurrent high-grade gliomas.
        J Clin Oncol. 2000; 18: 708-715
        • Scheinfeld N.
        A comprehensive review and evaluation of the side effects of the tumor necrosis factor alpha blockers etanercept, infliximab and adalimumab.
        J Dermatol Treat. 2004; 15: 280-294
        • Marty F.M.
        • Lee S.J.
        • Fahey M.M.
        • et al.
        Infliximab use in patients with severe graft-versus-host disease and other emerging risk factors of non-Candida invasive fungal infections in allogeneic hematopoietic stem cell transplant recipients: a cohort study.
        Blood. 2003; 102: 2768-2776
        • Smith K.J.
        • Skelton H.G.
        Rapid onset of cutaneous squamous cell carcinoma in patients with rheumatoid arthritis after starting tumor necrosis factor alpha receptor IgG1-Fc fusion complex therapy.
        J Am Acad Dermatol. 2001; 45: 953-956
        • Kavanaugh A.
        • Keystone E.C.
        The safety of biologic agents in early rheumatoid arthritis.
        Clin Exp Rheumatol. 2003; 21: S203-S208
        • Wolfe F.
        • Michaud K.
        Lymphoma in rheumatoid arthritis: the effect of methotrexate and anti-tumor necrosis factor therapy in 18,572 patients.
        Arthritis Rheum. 2004; 50: 1740-1751
        • Geborek P.
        • Bladstrom A.
        • Turesson C.
        • et al.
        Tumour necrosis factor blockers do not increase overall tumour risk in patients with rheumatoid arthritis, but may be associated with an increased risk of lymphomas.
        Ann Rheum Dis. 2005; 64: 699-703
        • Adams A.E.
        • Zwicker J.
        • Curiel C.
        • et al.
        Aggressive cutaneous T-cell lymphomas after TNFalpha blockade.
        J Am Acad Dermatol. 2004; 51: 660-662
        • Lee J.H.
        • Slifman N.R.
        • Gershon S.K.
        • et al.
        Life-threatening histoplasmosis complicating immunotherapy with tumor necrosis factor alpha antagonists infliximab and etanercept.
        Arthritis Rheum. 2002; 46: 2565-2570
        • Brown S.L.
        • Greene M.H.
        • Gershon S.K.
        • Edwards E.T.
        • Braun M.M.
        Tumor necrosis factor antagonist therapy and lymphoma development: twenty-six cases reported to the Food and Drug Administration.
        Arthritis Rheum. 2002; 46: 3151-3158
        • Slifman N.R.
        • Gershon S.K.
        • Lee J.H.
        • Edwards E.T.
        • Braun M.M.
        Listeria monocytogenes infection as a complication of treatment with tumor necrosis factor alpha-neutralizing agents.
        Arthritis Rheum. 2003; 48: 319-324
      3. Etanercept plus standard therapy for Wegener’s granulomatosis. N Engl J Med 2005;352(4):351–361.

        • Esser A.C.
        • Abril A.
        • Fayne S.
        • Doyle J.A.
        Acute development of multiple keratoacanthomas and squamous cell carcinomas after treatment with infliximab.
        J Am Acad Dermatol. 2004; 50: S75-S77
        • Fryrear R.S.
        • Wiggins A.K.
        • Sangueza O.
        • Yosipovitch G.
        Rapid onset of cutaneous squamous cell carcinoma of the penis in a patient with psoriasis on etanercept therapy.
        J Am Acad Dermatol. 2004; 51: 1026
        • Kurzrock R.
        The role of cytokines in cancer-related fatigue.
        Cancer. 2001; 92: 1684-1688
        • Wichers M.
        • Maes M.
        The psychoneuroimmuno-pathophysiology of cytokine-induced depression in humans.
        Int J Neuropsychopharmacol. 2002; 5: 375-388
        • Guttridge D.C.
        • Mayo M.W.
        • Madrid L.V.
        • Wang C.Y.
        • Baldwin Jr., A.S.
        NF-kappaB-induced loss of MyoD messenger RNA: possible role in muscle decay and cachexia.
        Science. 2000; 289: 2363-2366
        • Tisdale M.J.
        Cachexia in cancer patients.
        Nat Rev Cancer. 2002; 2: 862-871
        • Argiles J.M.
        • Busquets S.
        • Lopez-Soriano F.J.
        Cytokines in the pathogenesis of cancer cachexia.
        Curr Opin Clin Nutr Metab Care. 2003; 6: 401-406
        • Jatoi A.
        • Jett J.R.
        • Sloan J.
        • et al.
        A pilot study on safety and pharmacokinetics of infliximab for the cancer anorexia/weight loss syndrome in non-small-cell lung cancer patients.
        Support Care Cancer. 2004; 12: 859-863
        • Rosewicz S
        • Friess H
        • Malfertheiner
        • et al.
        Cancer Biotherapy & Radiopharmaceuticals.
        in: Proceedings of the 10th conference on cancer therapy with antibodies and immunoconjugates. vol. 19. Mary Ann Liebert, New Rochelle, NY2004: 503-511
        • Roodman G.D.
        Biology of osteoclast activation in cancer.
        J Clin Oncol. 2001; 19: 3562-3571
        • Kwan Tat S.
        • Padrines M.
        • Theoleyre S.
        • Heymann D.
        • Fortun Y.
        IL-6, RANKL, TNF-alpha/IL-1: interrelations in bone resorption pathophysiology.
        Cytokine Growth Factor Rev. 2004; 15: 49-60
        • Tobinick E.L.
        Targeted etanercept for treatment-refractory pain due to bone metastasis: two case reports.
        Clin Ther. 2003; 25: 2279-2288
        • Korngold R.
        • Marini J.C.
        • de Baca M.E.
        • Murphy G.F.
        • Giles-Komar J.
        Role of tumor necrosis factor-alpha in graft-versus-host disease and graft-versus-leukemia responses.
        Biol Blood Marrow Transplant. 2003; 9: 292-303
        • Couriel D.
        • Saliba R.
        • Hicks K.
        • et al.
        Tumor necrosis factor-alpha blockade for the treatment of acute GVHD.
        Blood. 2004; 104: 649-654
      4. Campos A, Vaz CP, Costa N, et al. Infliximab as salvage therapy for patients with acute graft versus host disease refractory to steroids. In: ASH 45th annual meeting, 6–9 December 2003, San Diego, CA.

        • Jacobsohn D.A.
        • Hallick J.
        • Anders V.
        • McMillan S.
        • Morris L.
        • Vogelsang G.B.
        Infliximab for steroid-refractory acute GVHD: a case series.
        Am J Hematol. 2003; 74: 119-124
        • Jacobsohn D.A.
        • Vogelsang G.B.
        Anti-cytokine therapy for the treatment of graft-versus-host disease.
        Curr Pharm Des. 2004; 10: 1195-1205
        • Palladino M.A.
        • Bahjat F.R.
        • Theodorakis E.A.
        • Moldawer L.L.
        Anti-TNF-alpha therapies: the next generation.
        Nat Rev Drug Discov. 2003; 2: 736-746
        • Trikha M.
        • Corringham R.
        • Klein B.
        • Rossi J.F.
        Targeted anti-interleukin-6 monoclonal antibody therapy for cancer: a review of the rationale and clinical evidence.
        Clin Cancer Res. 2003; 9: 4653-4665
        • Costes V.
        • Liautard J.
        • Picot M.C.
        • et al.
        Expression of the interleukin 6 receptor in primary renal cell carcinoma.
        J Clin Pathol. 1997; 50: 835-840
        • van Zaanen H.C.
        • Lokhorst H.M.
        • Aarden L.A.
        • et al.
        Chimaeric anti-interleukin 6 monoclonal antibodies in the treatment of advanced multiple myeloma: a phase I dose-escalating study.
        Br J Haematol. 1998; 102: 783-790
      5. Jang H, Prabhakar U, Jiao Q, Ford J, Miller B, Davis H. Pharmacokinetic/pharmacodynamic (PK/PD) modeling and trial simulations to guide dose selection with CNTO 328, a chimeric anti-IL-6 monoclonal antibody (MAb), in patients with renal cell carcinoma (RCC). In: 40th ASCO annual meeting proceedings, 5–8 June 2004, New Orleans, LA.

      6. Tocilizumab, Humanized anti-human IL-6 receptor monoclonal antibody, approved for manufacturing in Japan. Press Release: Chugai Pharmaceutical Co Ltd.; 13 April 2005. Available from;jsessionid=WKVA0MJV0MPEACSSUIHSFEQ?documentId=doc_5005&lang=en.

        • Naka T.
        • Nishimoto N.
        • Kishimoto T.
        The paradigm of IL-6: from basic science to medicine.
        Arthritis Res. 2002; 4: S233-S242
        • Benelli R.
        • Morini M.
        • Carrozzino F.
        • et al.
        Neutrophils as a key cellular target for angiostatin: implications for regulation of angiogenesis and inflammation.
        FASEB J. 2002; 16: 267-269
        • Koch A.E.
        • Polverini P.J.
        • Kunkel S.L.
        • et al.
        Interleukin-8 as a macrophage-derived mediator of angiogenesis.
        Science. 1992; 258: 1798-1801
        • Kitadai Y.
        • Takahashi Y.
        • Haruma K.
        • et al.
        Transfection of interleukin-8 increases angiogenesis and tumorigenesis of human gastric carcinoma cells in nude mice.
        Br J Cancer. 1999; 81: 647-653
        • Singh R.K.
        • Varney M.L.
        IL-8 expression in malignant melanoma: implications in growth and metastasis.
        Histol Histopathol. 2000; 15: 843-849
        • Kitadai Y.
        • Haruma K.
        • Sumii K.
        • et al.
        Expression of interleukin-8 correlates with vascularity in human gastric carcinomas.
        Am J Pathol. 1998; 152: 93-100
        • Masuya D.
        • Huang C.
        • Liu D.
        • et al.
        The intratumoral expression of vascular endothelial growth factor and interleukin-8 associated with angiogenesis in nonsmall cell lung carcinoma patients.
        Cancer. 2001; 92: 2628-2638
        • Singh R.K.
        • Varney M.L.
        • Bucana C.D.
        • Johansson S.L.
        Expression of interleukin-8 in primary and metastatic malignant melanoma of the skin.
        Melanoma Res. 1999; 9: 383-387
        • Eisma R.J.
        • Spiro J.D.
        • Kreutzer D.L.
        Role of angiogenic factors: coexpression of interleukin-8 and vascular endothelial growth factor in patients with head and neck squamous carcinoma.
        Laryngoscope. 1999; 109: 687-693
        • Yang X.D.
        • Corvalan J.R.
        • Wang P.
        • Roy C.M.
        • Davis C.G.
        Fully human anti-interleukin-8 monoclonal antibodies: potential therapeutics for the treatment of inflammatory disease states.
        J Leukoc Biol. 1999; 66: 401-410
        • Huang S.
        • Mills L.
        • Mian B.
        • et al.
        Fully humanized neutralizing antibodies to interleukin-8 (ABX-IL8) inhibit angiogenesis, tumor growth, and metastasis of human melanoma.
        Am J Pathol. 2002; 161: 125-134
        • Mian B.M.
        • Dinney C.P.
        • Bermejo C.E.
        • et al.
        Fully human anti-interleukin 8 antibody inhibits tumor growth in orthotopic bladder cancer xenografts via down-regulation of matrix metalloproteases and nuclear factor-kappaB.
        Clin Cancer Res. 2003; 9: 3167-3175
        • Muller A.
        • Homey B.
        • Soto H.
        • et al.
        Involvement of chemokine receptors in breast cancer metastasis.
        Nature. 2001; 410: 50-56
        • Liang Z.
        • Yoon Y.
        • Votaw J.
        • Goodman M.M.
        • Williams L.
        • Shim H.
        Silencing of CXCR4 blocks breast cancer metastasis.
        Cancer Res. 2005; 65: 967-971
        • Vaday G.G.
        • Hua S.B.
        • Peehl D.M.
        • et al.
        CXCR4 and CXCL12 (SDF-1) in prostate cancer: inhibitory effects of human single chain Fv antibodies.
        Clin Cancer Res. 2004; 10: 5630-5639
        • Tamamura H.
        • Hori A.
        • Kanzaki N.
        • et al.
        T140 analogs as CXCR4 antagonists identified as anti-metastatic agents in the treatment of breast cancer.
        FEBS Lett. 2003; 550: 79-83
        • Takenaga M.
        • Tamamura H.
        • Hiramatsu K.
        • et al.
        A single treatment with microcapsules containing a CXCR4 antagonist suppresses pulmonary metastasis of murine melanoma.
        Biochem Biophys Res Commun. 2004; 320: 226-232
      7. Kim S, Mendoza A, Midura B, et al. Inhibition of murine osteosarcoma lung metastases using the CXCR4 antagonist, CTCE-9908. In: Proceedings of 96th AACR annual meeting; 2005.

        • De Clercq E.
        The bicyclam AMD3100 story.
        Nat Rev Drug Discov. 2003; 2: 581-587
        • Devine S.M.
        • Flomenberg N.
        • Vesole D.H.
        • et al.
        Rapid mobilization of CD34+ cells following administration of the CXCR4 antagonist AMD3100 to patients with multiple myeloma and non-Hodgkin’s lymphoma.
        J Clin Oncol. 2004; 22: 1095-1102
        • Smith M.C.
        • Luker K.E.
        • Garbow J.R.
        • et al.
        CXCR4 regulates growth of both primary and metastatic breast cancer.
        Cancer Res. 2004; 64: 8604-8612
        • Marchesi F.
        • Monti P.
        • Leone B.E.
        • et al.
        Increased survival, proliferation, and migration in metastatic human pancreatic tumor cells expressing functional CXCR4.
        Cancer Res. 2004; 64: 8420-8427
        • Rubin J.B.
        • Kung A.L.
        • Klein R.S.
        • et al.
        A small-molecule antagonist of CXCR4 inhibits intracranial growth of primary brain tumors.
        Proc Natl Acad Sci USA. 2003; 100: 13513-13518
        • Goede V.
        • Brogelli L.
        • Ziche M.
        • Augustin H.G.
        Induction of inflammatory angiogenesis by monocyte chemoattractant protein-1.
        Int J Cancer. 1999; 82: 765-770
        • Ohta M.
        • Kitadai Y.
        • Tanaka S.
        • et al.
        Monocyte chemoattractant protein-1 expression correlates with macrophage infiltration and tumor vascularity in human gastric carcinomas.
        Int J Oncol. 2003; 22: 773-778
        • Ohta M.
        • Kitadai Y.
        • Tanaka S.
        • et al.
        Monocyte chemoattractant protein-1 expression correlates with macrophage infiltration and tumor vascularity in human esophageal squamous cell carcinomas.
        Int J Cancer. 2002; 102: 220-224
        • Leung S.Y.
        • Wong M.P.
        • Chung L.P.
        • Chan A.S.
        • Yuen S.T.
        Monocyte chemoattractant protein-1 expression and macrophage infiltration in gliomas.
        Acta Neuropathol (Berl). 1997; 93: 518-527
        • Takeshima H.
        • Kuratsu J.
        • Takeya M.
        • Yoshimura T.
        • Ushio Y.
        Expression and localization of messenger RNA and protein for monocyte chemoattractant protein-1 in human malignant glioma.
        J Neurosurg. 1994; 80: 1056-1062
        • Isik F.F.
        • Rand R.P.
        • Gruss J.S.
        • Benjamin D.
        • Alpers C.E.
        Monocyte chemoattractant protein-1 mRNA expression in hemangiomas and vascular malformations.
        J Surg Res. 1996; 61: 71-76
        • Saji H.
        • Koike M.
        • Yamori T.
        • et al.
        Significant correlation of monocyte chemoattractant protein-1 expression with neovascularization and progression of breast carcinoma.
        Cancer. 2001; 92: 1085-1091
        • Ueno T.
        • Toi M.
        • Saji H.
        • et al.
        Significance of macrophage chemoattractant protein-1 in macrophage recruitment, angiogenesis, and survival in human breast cancer.
        Clin Cancer Res. 2000; 6: 3282-3289
        • Liss C.
        • Fekete M.J.
        • Hasina R.
        • Lam C.D.
        • Lingen M.W.
        Paracrine angiogenic loop between head-and-neck squamous-cell carcinomas and macrophages.
        Int J Cancer. 2001; 93: 781-785
        • Salcedo R.
        • Ponce M.L.
        • Young H.A.
        • et al.
        Human endothelial cells express CCR2 and respond to MCP-1: direct role of MCP-1 in angiogenesis and tumor progression.
        Blood. 2000; 96: 34-40
        • Galvez B.G.
        • Genis L.
        • Matias-Roman S.
        • et al.
        Membrane type 1-matrix metalloproteinase is regulated by chemokines monocyte-chemoattractant protein-1/CCL2 and interleukin-8/CXCL8 in endothelial cells during angiogenesis.
        J Biol Chem. 2005; 280: 1292-1298
        • Hong K.H.
        • Ryu J.
        • Han K.H.
        Monocyte chemoattractant protein-1-induced angiogenesis is mediated by vascular endothelial growth factor-A.
        Blood. 2005; 105: 1405-1407
      8. Ono M, Nakao S, Kuwano T, et al. The control of tumor growth and angiogenesis by inflammatory cytokines and infiltration of macrophages in tumor microenvironment. In: Proceedings of 96th AACR annual meeting; 2005.

      9. Yan L, Kesavan P, Stowell N, et al. Contribution of inflammatory cells in tumor angiogenesis: MCP-1 and tumor angiogenesis. In: Proceedings of AACR-NCI-EORTC international conference, molecular targets and cancer therapeutics; 2003. p. 132.

      10. Kesavan P, McCabe F, Millar H, et al. Anti-CCL-2/MCP-1 (monocyte chemoattractant protein-1) monoclonal antibodies effectively inhibit tumor angiogenesis and growth of human breast carcinoma. In: Proceedings of 96th AACR annual meeting; 2005.

        • Gu L.
        • Tseng S.
        • Horner R.M.
        • Tam C.
        • Loda M.
        • Rollins B.J.
        Control of TH2 polarization by the chemokine monocyte chemoattractant protein-1.
        Nature. 2000; 404: 407-411
        • Falcone D.J.
        • Khan K.M.
        • Layne T.
        • Fernandes L.
        Macrophage formation of angiostatin during inflammation. A byproduct of the activation of plasminogen.
        J Biol Chem. 1998; 273: 31480-31485
        • Scapini P.
        • Nesi L.
        • Morini M.
        • et al.
        Generation of biologically active angiostatin kringle 1–3 by activated human neutrophils.
        J Immunol. 2002; 168: 5798-5804