Tumour necrosis factor-α as a tumour promoter

  • Peter Szlosarek
    Centre for Translational Oncology, Institute of Cancer and the CR-UK Clinical Centre, Barts and The London, Queen Mary’s School of Medicine and Dentistry, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
    Search for articles by this author
  • Kellie A. Charles
    Centre for Translational Oncology, Institute of Cancer and the CR-UK Clinical Centre, Barts and The London, Queen Mary’s School of Medicine and Dentistry, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
    Search for articles by this author
  • Frances R. Balkwill
    Corresponding author: Tel.: +44 207 88 26106/6108; fax: +44 207 88 26110.
    Centre for Translational Oncology, Institute of Cancer and the CR-UK Clinical Centre, Barts and The London, Queen Mary’s School of Medicine and Dentistry, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, UK
    Search for articles by this author


      It is becoming more evident that many aspects of tumour promotion arise from persistent and unresolving inflammation. One of the key molecules mediating the inflammatory processes in tumour promotion is the cytokine, tumour necrosis factor-α (TNF-α). Clinically, elevated serum concentrations and increased expression of TNF-α are present in various pre-neoplastic and malignant diseases, compared with serum and tissue from healthy individuals. Although over the last few decades high-dose administration of TNF-α has been used as a cytotoxic agent, recent pre-clinical cancer models have provided critical evidence to support the link between chronic, low level TNF-α exposure and the acquisition of pro-malignant phenotype (i.e., increased growth, invasion and metastasis). Furthermore, sophisticated cellular systems are being utilised to dissect the crucial role TNF-α plays in the communication of stromal/inflammatory cells and tumour cells. Understanding the intricate roles of TNF-α in the process of tumour promotion will assist in the development of novel cancer therapeutics.


      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to European Journal of Cancer
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Balkwill F.
        • Mantovani A.
        Inflammation and cancer: back to Virchow?.
        Lancet. 2001; 357: 539-545
        • Coussens L.M.
        • Werb Z.
        Inflammation and cancer.
        Nature. 2002; 420: 860-867
        • Balkwill F.
        • Charles K.A.
        • Mantovani A.
        Smoldering and polarized inflammation in the initiation and promotion of malignant disease.
        Cancer Cell. 2005; 7: 211-217
        • Tlsty T.D.
        Stromal cells can contribute oncogenic signals.
        Semin Cancer Biol. 2001; 11: 97-104
        • van Kempen L.C.
        • Ruiter D.J.
        • van Muijen G.N.
        • Coussens L.M.
        The tumor microenvironment: a critical determinant of neoplastic evolution.
        Eur J Cell Biol. 2003; 82: 539-548
        • Aggarwal B.B.
        • Samanta A.
        • Feldmann M.
        TNF-α cytokine reference. vol. 1. Academic Press, London2000: 413-433
        • Hanahan D.
        • Weinberg R.A.
        The hallmarks of cancer.
        Cell. 2000; 100: 57-70
        • Locksley R.M.
        • Killeen N.
        • Lenardo M.J.
        The TNF and TNF receptor superfamilies: integrating mammalian biology.
        Cell. 2001; 104: 487-501
        • Carswell E.A.
        • Old L.J.
        • Kassel R.L.
        • Green S.
        • Fiore N.
        • Williamson B.
        An endotoxin-induced serum factor that causes necrosis of tumors.
        Proc Natl Acad Sci USA. 1975; 72: 3666-3670
        • MacEwan D.J.
        TNF receptor subtype signalling: differences and cellular consequences.
        Cell Signal. 2002; 14: 477-492
        • Chen G.
        • Goeddel D.V.
        TNF-R1 signaling: a beautiful pathway.
        Science. 2002; 296: 1634-1635
        • Micheau O.
        • Tschopp J.
        Induction of TNF receptor I-mediated apoptosis via two sequential signaling complexes.
        Cell. 2003; 114: 181-190
        • Wajant H.
        • Pfizenmaier K.
        • Scheurich P.
        Tumor necrosis factor signalling.
        Cell Death Differ. 2003; 10: 45-65
        • Szlosarek P.W.
        • Balkwill F.R.
        Tumour necrosis factor alpha: a potential target for the therapy of solid tumours.
        Lancet Oncol. 2003; 4: 565-573
        • Noach L.A.
        • Bosma N.B.
        • Jansen J.
        • Hoek F.J.
        • van Deventer S.J.
        • Tytgat G.N.
        Mucosal tumor necrosis factor-α, interleukin-1 beta, and interleukin-8 production in patients with Helicobacter pylori infection.
        Scand J Gastroenterol. 1994; 29: 425-429
        • Noguchi M.
        • Hiwatashi N.
        • Liu Z.
        • Toyota T.
        Secretion imbalance between tumour necrosis factor and its inhibitor in inflammatory bowel disease.
        Gut. 1998; 43: 203-209
      1. Szlosarek PW, Grimshaw MJ, Kulbe H, et al. Expression and regulation of tumor necrosis factor-α in normal and malignant ovarian epithelium. Mol Cancer Ther 2006 (in press).

        • Tselepis C.
        • Perry I.
        • Dawson C.
        • et al.
        Tumour necrosis factor-αin Barrett’s oesophagus: a potential novel mechanism of action.
        Oncogene. 2002; 21: 6071-6081
        • Nauts H.C.
        • Fowler G.A.
        • Bogatko F.H.
        A review of the influence of bacterial infection and of bacterial products (Coley’s toxins) on malignant tumours in man.
        Acta Medica Scandinavia. 1953; 145: S276
        • Ruegg C.
        • Yilmaz A.
        • Bieler G.
        • Bamat J.
        • Chaubert P.
        • Lejeune F.J.
        Evidence for the involvement of endothelial cell integrin alphaVbeta3 in the disruption of the tumor vasculature induced by TNF and IFN-gamma.
        Nat Med. 1998; 4: 408-414
        • Havell E.A.
        • Fiers W.
        • North R.J.
        The anti-tumor function of tumor necrosis factor (TNF), I. Therapeutic action of TNF against an established murine sarcoma is indirect, immunologically dependent, and limited by severe toxicity.
        J Exp Med. 1988; 167: 1067-1085
        • Asher A.
        • Mule J.J.
        • Reichert C.M.
        • Shiloni E.
        • Rosenberg S.A.
        Studies on the anti-tumor efficacy of systemically administered recombinant tumor necrosis factor against several murine tumors in vivo.
        J Immunol. 1987; 138: 963-974
        • Lee R.K.
        • Spielman J.
        • Zhao D.Y.
        • Olsen K.J.
        • Podack E.R.
        Perforin, Fas ligand, and tumor necrosis factor are the major cytotoxic molecules used by lymphokine-activated killer cells.
        J Immunol. 1996; 157: 1919-1925
        • Ratner A.
        • Clark W.R.
        Role of TNF-α in CD8+ cytotoxic T lymphocyte-mediated lysis.
        J Immunol. 1993; 150: 4303-4314
        • Baxevanis C.N.
        • Papamichail M.
        Characterization of the anti-tumor immune response in human cancers and strategies for immunotherapy.
        Crit Rev Oncol Hematol. 1994; 16: 157-179
        • Jiang H.
        • Stewart C.A.
        • Fast D.J.
        • Leu R.W.
        Tumor target-derived soluble factor synergizes with IFN-gamma and IL-2 to activate macrophages for tumor necrosis factor and nitric oxide production to mediate cytotoxicity of the same target.
        J Immunol. 1992; 149: 2137-2146
        • Zganiacz A.
        • Santosuosso M.
        • Wang J.
        • et al.
        TNF-αis a critical negative regulator of type 1 immune activation during intracellular bacterial infection.
        J Clin Invest. 2004; 113: 401-413
        • Mundt A.J.
        • Vijayakumar S.
        • Nemunaitis J.
        • et al.
        A phase I trial of TNFerade biologic in patients with soft tissue sarcoma in the extremities.
        Clin Cancer Res. 2004; 10: 5747-5753
        • Gaiotti D.
        • Chung J.
        • Iglesias M.
        • et al.
        Tumor necrosis factor-α promotes human papillomavirus (HPV) E6/E7 RNA expression and cyclin-dependent kinase activity in HPV-immortalized keratinocytes by a ras-dependent pathway.
        Mol Carcinog. 2000; 27: 97-109
        • Wu S.
        • Boyer C.M.
        • Whitaker R.S.
        • et al.
        Tumor necrosis factor alpha as an autocrine and paracrine growth factor for ovarian cancer: monokine induction of tumor cell proliferation and tumor necrosis factor alpha expression.
        Cancer Res. 1993; 53: 1939-1944
        • Maeda M.
        • Watanabe N.
        • Okamoto T.
        • et al.
        Endogenous tumor necrosis factor functions as a resistant factor against adriamycin.
        Int J Cancer. 1994; 58: 376-379
        • Mizokami A.
        • Gotoh A.
        • Yamada H.
        • et al.
        Tumor necrosis factor-αrepresses androgen sensitivity in the LNCaP prostate cancer cell line.
        J Urol. 2000; 164: 800-805
        • Jaiswal M.
        • LaRusso N.F.
        • Burgart L.J.
        • et al.
        Inflammatory cytokines induce DNA damage and inhibit DNA repair in cholangiocarcinoma cells by a nitric oxide-dependent mechanism.
        Cancer Res. 2000; 60: 184-190
        • Murakami A.
        • Kawabata K.
        • Koshiba T.
        • et al.
        Nitric oxide synthase is induced in tumor promoter-sensitive, but not tumor promoter-resistant, JB6 mouse epidermal cells cocultured with interferon-gamma-stimulated RAW264.7 cells: the role of tumor necrosis factor-α.
        Cancer Res. 2000; 60: 6326-6331
        • Weichselbaum R.R.
        • Kufe D.W.
        • Hellman S.
        • et al.
        Radiation-induced tumour necrosis factor-α expression: clinical application of transcriptional and physical targeting of gene therapy.
        Lancet Oncol. 2002; 3: 665-671
        • Leibovich S.J.
        • Polverini P.J.
        • Shepard H.M.
        • et al.
        Macrophage-induced angiogenesis is mediated by tumour necrosis factor-α.
        Nature. 1987; 329: 630-632
        • Bussolino F.
        • Camussi G.
        • Baglioni C.
        Synthesis and release of platelet-activating factor by human vascular endothelial cells treated with tumor necrosis factor or interleukin 1 alpha.
        J Biol Chem. 1988; 263: 11856-11861
        • Cheng N.
        • Chen J.
        Tumor necrosis factor-α induction of endothelial ephrin A1 expression is mediated by a p38 MAPK- and SAPK/JNK-dependent but nuclear factor-kappa B-independent mechanism.
        J Biol Chem. 2001; 276: 13771-13777
        • De Cesaris P.
        • Starace D.
        • Starace G.
        • et al.
        Activation of Jun N-terminal kinase/stress-activated protein kinase pathway by tumor necrosis factor alpha leads to intercellular adhesion molecule-1 expression.
        J Biol Chem. 1999; 274: 28978-28982
        • Leek R.D.
        • Landers R.
        • Fox S.B.
        • et al.
        Association of tumour necrosis factor alpha and its receptors with thymidine phosphorylase expression in invasive breast carcinoma.
        Br J Cancer. 1998; 77: 2246-2251
        • Yoshida S.
        • Ono M.
        • Shono T.
        • et al.
        Involvement of interleukin-8, vascular endothelial growth factor, and basic fibroblast growth factor in tumor necrosis factor alpha-dependent angiogenesis.
        Mol Cell Biol. 1997; 17: 4015-4023
        • Battegay E.J.
        • Raines E.W.
        • Colbert T.
        • et al.
        TNF-α stimulation of fibroblast proliferation. Dependence on platelet-derived growth factor (PDGF) secretion and alteration of PDGF receptor expression.
        J Immunol. 1995; 154: 6040-6047
        • Leber T.M.
        • Balkwill F.R.
        Regulation of monocyte MMP-9 production by TNF-α and a tumour-derived soluble factor (MMPSF).
        Br J Cancer. 1998; 78: 724-732
        • Rosen E.M.
        • Goldberg I.D.
        • Liu D.
        • et al.
        Tumor necrosis factor stimulates epithelial tumor cell motility.
        Cancer Res. 1991; 51: 5315-5321
        • Hagemann T.
        • Wilson J.
        • Kulbe H.
        • et al.
        Macrophages induce invasiveness of epithelial cancer cells via NF-kappa B and JNK.
        J Immunol. 2005; 175: 1197-1205
        • Kulbe H.
        • Hagemann T.
        • Szlosarek P.W.
        • et al.
        The inflammatory cytokine tumor necrosis factor-α regulates chemokine receptor expression on ovarian cancer cells.
        Cancer Res. 2005; 65: 10355-10362
        • Bates R.C.
        • Mercurio A.M.
        Tumor necrosis factor-α stimulates the epithelial-to-mesenchymal transition of human colonic organoids.
        Mol Biol Cell. 2003; 14 (Epub 2003 Jan 26): 1790-1800
        • Moore R.J.
        • Owens D.M.
        • Stamp G.
        • et al.
        Mice deficient in tumor necrosis factor-α are resistant to skin carcinogenesis.
        Nat Med. 1999; 5: 828-831
        • Suganuma M.
        • Okabe S.
        • Marino M.W.
        • et al.
        Essential role of tumor necrosis factor alpha (TNF-α) in tumor promotion as revealed by TNF-α-deficient mice.
        Cancer Res. 1999; 59: 4516-4518
        • Arnott C.H.
        • Scott K.A.
        • Moore R.J.
        • et al.
        Tumour necrosis factor-α mediates tumour promotion via a PKC alpha- and AP-1-dependent pathway.
        Oncogene. 2002; 21: 4728-4738
        • Arnott C.H.
        • Scott K.A.
        • Moore R.J.
        • Robinson S.C.
        • Thompson R.G.
        • Balkwill F.R.
        Expression of both TNF-α receptor subtypes is essential for optimal skin tumour development.
        Oncogene. 2004; 23: 1902-1910
        • Roberts R.A.
        • Kimber I.
        Cytokines in non-genotoxic hepatocarcinogenesis.
        Carcinogenesis. 1999; 20: 1397-1401
        • Knight B.
        • Yeoh G.C.
        • Husk K.L.
        • et al.
        Impaired preneoplastic changes and liver tumor formation in tumor necrosis factor receptor type 1 knockout mice.
        J Exp Med. 2000; 192: 1809-1818
        • Kitakata H.
        • Nemoto-Sasaki Y.
        • Takahashi Y.
        • et al.
        Essential roles of tumor necrosis factor receptor p55 in liver metastasis of intrasplenic administration of colon 26 cells.
        Cancer Res. 2002; 62: 6682-6687
        • Ueno Y.
        • Sakurai H.
        • Matsuo M.
        • Choo M.K.
        • Koizumi K.
        • Saiki I.
        Selective inhibition of TNF-α-induced activation of mitogen-activated protein kinases and metastatic activities by gefitinib.
        Br J Cancer. 2005; 92: 1690-1695
        • Korner H.
        • Cretney E.
        • Wilhelm P.
        • et al.
        Tumor necrosis factor sustains the generalized lymphoproliferative disorder (gld) phenotype.
        J Exp Med. 2000; 191: 89-96
        • Orosz P.
        • Echtenacher B.
        • Falk W.
        • et al.
        Enhancement of experimental metastasis by tumor necrosis factor.
        J Exp Med. 1993; 177: 1391-1398
        • Malik S.T.
        • Naylor M.S.
        • East N.
        • et al.
        Cells secreting tumour necrosis factor show enhanced metastasis in nude mice.
        Eur J Cancer. 1990; 26: 1031-1034
        • Qin Z.
        • Kruger-Krasagakes S.
        • Kunzendorf U.
        • et al.
        Expression of tumor necrosis factor by different tumor cell lines results either in tumor suppression or augmented metastasis.
        J Exp Med. 1993; 178: 355-360
        • Waterston A.M.
        • Salway F.
        • Andreakos E.
        • Butler D.M.
        • Feldmann M.
        • Coombes R.C.
        TNF autovaccination induces self anti-TNF antibodies and inhibits metastasis in a murine melanoma model.
        Br J Cancer. 2004; 90: 1279-1284
        • Komori A.
        • Yatsunami J.
        • Suganuma M.
        • et al.
        Tumor necrosis factor acts as a tumor promoter in BALB/3T3 cell transformation.
        Cancer Res. 1993; 53: 1982-1985
        • Malik S.T.
        • Griffin D.B.
        • Fiers W.
        • et al.
        Paradoxical effects of tumour necrosis factor in experimental ovarian cancer.
        Int J Cancer. 1989; 44: 918-925
        • Kobayashi H.
        • Yagyu T.
        • Kondo T.
        • et al.
        Suppression of urokinase receptor expression by thalidomide is associated with inhibition of nuclear factor κB activation and subsequently suppressed ovarian cancer dissemination.
        Cancer Res. 2005; 65: 10464-10471
        • Oliff A.
        • Defeo-Jones D.
        • Boyer M.
        • et al.
        Tumors secreting human TNF/cachectin induce cachexia in mice.
        Cell. 1987; 50: 555-563
        • Cahlin C.
        • Korner A.
        • Axelsson H.
        • et al.
        Experimental cancer cachexia: the role of host-derived cytokines interleukin (IL)-6, IL-12, interferon-gamma, and tumor necrosis factor alpha evaluated in gene knockout, tumor-bearing mice on C57 Bl background and eicosanoid-dependent cachexia.
        Cancer Res. 2000; 60: 5488-5493
        • Yoneda T.
        • Alsina M.A.
        • Chavez J.B.
        • et al.
        Evidence that tumor necrosis factor plays a pathogenetic role in the paraneoplastic syndromes of cachexia, hypercalcemia, and leukocytosis in a human tumor in nude mice.
        J Clin Invest. 1991; 87: 977-985
        • Lu T.
        • Burdelya L.G.
        • Swiatkowski S.M.
        • et al.
        Secreted transforming growth factor beta2 activates NF-κB, blocks apoptosis, and is essential for the survival of some tumor cells.
        Proc Natl Acad Sci USA. 2004; 101: 7112-7117
        • Lu T.
        • Sathe S.S.
        • Swiatkowski S.M.
        • Hampole C.V.
        • Stark G.R.
        Secretion of cytokines and growth factors as a general cause of constitutive NFκB activation in cancer.
        Oncogene. 2004; 23: 2138-2145
        • Greten F.R.
        • Eckmann L.
        • Greten T.F.
        • et al.
        IKKbeta links inflammation and tumorigenesis in a mouse model of colitis-associated cancer.
        Cell. 2004; 118: 285-296
        • Pikarsky E.
        • Porat R.M.
        • Stein I.
        • et al.
        NF-κB functions as a tumour promoter in inflammation-associated cancer.
        Nature. 2004; 431: 461-466
        • Dajee M.
        • Lazarov M.
        • Zhang J.Y.
        • et al.
        NF-κB blockade and oncogenic Ras trigger invasive human epidermal neoplasia.
        Nature. 2003; 421: 639-643
        • van Hogerlinden M.
        • Auer G.
        • Toftgard R.
        Inhibition of Rel/Nuclear Factor-κB signaling in skin results in defective DNA damage-induced cell cycle arrest and Ha-ras- and p53-independent tumor development.
        Oncogene. 2002; 21: 4969-4977