Advertisement

Cancer CXC chemokine networks and tumour angiogenesis

  • Robert M. Strieter
    Correspondence
    Corresponding author: Tel.: +1 310 794 1999; fax: +1 310 794 1998.
    Affiliations
    Department of Medicine, Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine at the University of California, Pathology and Pediatrics, 900 Veteran Ave., 14-154 Warren hall, Los Angeles, CA 90095-1786, USA

    Department of Pathology, Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine at the University of California, Los Angeles, CA 90095-1786, USA

    Department of Pediatrics, Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine at the University of California, Los Angeles, CA 90095-1786, USA
    Search for articles by this author
  • Marie D. Burdick
    Affiliations
    Department of Medicine, Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine at the University of California, Pathology and Pediatrics, 900 Veteran Ave., 14-154 Warren hall, Los Angeles, CA 90095-1786, USA
    Search for articles by this author
  • Javier Mestas
    Affiliations
    Department of Medicine, Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine at the University of California, Pathology and Pediatrics, 900 Veteran Ave., 14-154 Warren hall, Los Angeles, CA 90095-1786, USA
    Search for articles by this author
  • Brigitte Gomperts
    Affiliations
    Department of Pediatrics, Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine at the University of California, Los Angeles, CA 90095-1786, USA
    Search for articles by this author
  • Michael P. Keane
    Affiliations
    Department of Medicine, Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine at the University of California, Pathology and Pediatrics, 900 Veteran Ave., 14-154 Warren hall, Los Angeles, CA 90095-1786, USA
    Search for articles by this author
  • John A. Belperio
    Affiliations
    Department of Medicine, Division of Pulmonary and Critical Care Medicine, David Geffen School of Medicine at the University of California, Pathology and Pediatrics, 900 Veteran Ave., 14-154 Warren hall, Los Angeles, CA 90095-1786, USA
    Search for articles by this author

      Abstract

      Chemokines have pleiotropic effects in regulating immunity, angiogenesis, stem cell trafficking, and mediating organ-specific metastases of cancer. In the context of angiogenesis, the CXC chemokine family is a unique group of cytokines known for their ability to behave in a disparate manner in the regulation of angiogenesis. The glutamic acid–leucine–arginine (ELR+) CXC chemokines are potent promoters of angiogenesis, and mediate their angiogenic activity via signal-coupling of CXCR2 on endothelium. By contrast, members of the CXC chemokine family, such as platelet factor-4 (PF4; CXCL4) and interferon-inducible CXC chemokines are potent inhibitors of angiogenesis, and use CXCR3 on endothelium to mediate their angiostatic activity. This review will discuss the biology of CXC chemokines in the context of angiogenesis related to cancer.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to European Journal of Cancer
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Auerbach W.
        • Auerbach R.
        Angiogenesis inhibition: a review.
        Pharmacol Ther. 1994; 63: 265-311
        • Auerbach R.
        • Auerbach W.
        • Polakowski I.
        Assays for angiogenesis: a review.
        Pharmacol Ther. 1991; 51: 1-11
        • Ziche M.
        • Morbidelli L.
        • Donnini S.
        Angiogenesis.
        Exp Nephrol. 1996; 4: 1-14
        • Pluda J.M.
        Tumor-associated angiogenesis: mechanisms, clinical implications, and therapeutic strategies.
        Semin Oncol. 1997; 24: 203-218
        • Pluda J.M.
        • Parkinson D.R.
        Clinical implications of tumor-associated neovascularization and current antiangiogenic strategies for the treatment of malignancies of pancreas.
        Cancer. 1996; 78: 680-687
        • Gastl G.
        • Hermann T.
        • Steurer M.
        • et al.
        Angiogenesis as a target for tumor treatment.
        Oncology. 1997; 54: 177-184
        • Risau W.
        Angiogenesis is coming of age [Editorial; Comment].
        Circ Res. 1998; 82: 926-928
        • Risau W.
        Mechanisms of angiogenesis.
        Nature. 1997; 386: 671-674
        • Hotfilder M.
        • Nowak-Gottl U.
        • Wolff J.E.
        Tumorangiogenesis: a network of cytokines.
        Klin Padiatr. 1997; 209: 265-270
        • Hui Y.F.
        • Ignoffo R.J.
        Angiogenesis inhibitors. A promising role in cancer therapy.
        Cancer Pract. 1998; 6: 60-62
        • Kumar R.
        • Fidler I.J.
        Angiogenic molecules and cancer metastasis.
        In Vivo. 1998; 12: 27-34
        • Zetter B.R.
        Angiogenesis. State of the art.
        Chest. 1988; 93: 159S-166S
        • Zetter B.R.
        Angiogenesis and tumor metastasis.
        Annu Rev Med. 1998; 49: 407-424
        • Lund E.L.
        • Spang-Thomsen M.
        • Skovgaard-Poulsen H.
        • Kristjansen P.E.
        Tumor angiogenesis – a new therapeutic target in gliomas.
        Acta Neurol Scand. 1998; 97: 52-62
        • Luster A.D.
        Chemokines–chemotactic cytokines that mediate inflammation.
        N Engl J Med. 1998; 338: 436-445
        • Belperio J.A.
        • Keane M.P.
        • Arenberg D.A.
        • et al.
        CXC chemokines in angiogenesis.
        J Leukoc Biol. 2000; 68: 1-8
        • Strieter R.M.
        • Polverini P.J.
        • Kunkel S.L.
        • et al.
        The functional role of the ELR motif in CXC chemokine-mediated angiogenesis.
        J Biol Chem. 1995; 270: 27348-27357
        • Nor J.E.
        • Christensen J.
        • Liu J.
        • et al.
        Up-regulation of Bcl-2 in microvascular endothelial cells enhances intratumoral angiogenesis and accelerates tumor growth.
        Cancer Res. 2001; 61: 2183-2188
        • Heidemann J.
        • Ogawa H.
        • Dwinell M.B.
        • et al.
        Angiogenic effects of interleukin 8 (CXCL8) in human intestinal microvascular endothelial cells are mediated by CXCR2.
        J Biol Chem. 2003; 278: 8508-8515
        • Schruefer R.
        • Lutze N.
        • Schymeinsky J.
        • Walzog B.
        Human neutrophils promote angiogenesis by a paracrine feedforward mechanism involving endothelial interleukin-8.
        Am J Physiol Heart Circ Physiol. 2004;
        • Dong G.
        • Chen Z.
        • Li Z.Y.
        • Yeh N.T.
        • Bancroft C.C.
        • Van Waes C.
        Hepatocyte growth factor/scatter factor-induced activation of MEK and PI3K signal pathways contributes to expression of proangiogenic cytokines interleukin-8 and vascular endothelial growth factor in head and neck squamous cell carcinoma.
        Cancer Res. 2001; 61: 5911-5918
        • Hirata A.
        • Ogawa S.
        • Kometani T.
        • et al.
        ZD1839 (Iressa) induces antiangiogenic effects through inhibition of epidermal growth factor receptor tyrosine kinase.
        Cancer Res. 2002; 62: 2554-2560
        • Levine L.
        • Lucci 3rd, J.A.
        • Pazdrak B.
        • et al.
        Bombesin stimulates nuclear factor kappa B activation and expression of proangiogenic factors in prostate cancer cells.
        Cancer Res. 2003; 63: 3495-3502
        • Richmond A.
        • NF-kappa B.
        chemokine gene transcription and tumour growth.
        Nat Rev Immunol. 2002; 2: 664-674
        • Addison C.L.
        • Daniel T.O.
        • Burdick M.D.
        • et al.
        The CXC chemokine receptor 2, CXCR2, is the putative receptor for ELR(+) CXC chemokine-induced angiogenic activity.
        J Immunol. 2000; 165: 5269-5277
        • Murdoch C.
        • Monk P.N.
        • Finn A.
        CXC chemokine receptor expression on human endothelial cells.
        Cytokine. 1999; 11: 704-712
        • Sugden P.H.
        • Clerk A.
        Regulation of the ERK subgroup of MAP kinase cascades through G protein- coupled receptors.
        Cell Signal. 1997; 9: 337-351
        • Pawson T.
        • Scott J.D.
        Signaling through scaffold, anchoring, and adaptor proteins.
        Science. 1997; 278: 2075-2080
        • Shyamala V.
        • Khoja H.
        Interleukin-8 receptors R1 and R2 activate mitogen-activated protein kinases and induce c-fos, independent of Ras and Raf-1 in Chinese hamster ovary cells.
        Biochemistry. 1998; 37: 15918-15924
        • Couty J.P.
        • Gershengorn M.C.
        Insights into the viral G protein-coupled receptor encoded by human herpesvirus type 8 (HHV-8.
        Biol Cell. 2004; 96: 349-354
        • Manna S.K.
        • Ramesh G.T.
        Interleukin-8 induces nuclear transcription factor-kappaB through a TRAF6-dependent pathway.
        J Biol Chem. 2005; 280: 7010-7021
        • Keane M.P.
        • Belperio J.A.
        • Xue Y.Y.
        • Burdick M.D.
        • Strieter R.M.
        Depletion of CXCR2 inhibits tumor growth and angiogenesis in a murine model of lung cancer.
        J Immunol. 2004; 172: 2853-2860
        • Addison C.L.
        • Belperio J.A.
        • Burdick M.D.
        • Strieter R.M.
        Overexpression of the duffy antigen receptor for chemokines (DARC) by NSCLC tumor cells results in increased tumor necrosis.
        BMC Cancer. 2004; 4: 28
        • Arenberg D.A.
        • Kunkel S.L.
        • Polverini P.J.
        • Glass M.
        • Burdick M.D.
        • Strieter R.M.
        Inhibition of interleukin-8 reduces tumorigenesis of human non-small cell lung cancer in SCID mice.
        J Clin Invest. 1996; 97: 2792-2802
        • Arenberg D.A.
        • Keane M.P.
        • DiGiovine B.
        • et al.
        Epithelial-neutrophil activating peptide (ENA-78) is an important angiogenic factor in non-small cell lung cancer.
        J Clin Invest. 1998; 102: 465-472
        • Moore B.B.
        • Arenberg D.A.
        • Stoy K.
        • et al.
        Distinct CXC chemokines mediate tumorigenicity of prostate cancer cells.
        Am J Pathol. 1999; 154: 1503-1512
        • Strieter R.M.
        • Belperio J.A.
        • Arenberg D.A.
        • Smith M.I.
        • Burdick M.D.
        • Keane M.P.
        CXC chemokine in angiogenesis.
        in: Ransohoff RM Suzuki K Proudfoot AEI Hickey WF Universes in delicate balance: chemokines and the nervous system. Elsevier Science BV, Amsterdam, The Netherlands2002: 129-148
        • Ghosh S.
        • May M.J.
        • Kopp E.B.
        NF-kappa B and Rel proteins: evolutionarily conserved mediators of immune responses.
        Annu Rev Immunol. 1998; 16: 225-260
        • Pold M.
        • Zhu L.X.
        • Sharma S.
        • et al.
        Cyclooxygenase-2-dependent expression of angiogenic CXC chemokines ENA-78/CXC ligand (CXCL) 5 and interleukin-8/CXCL8 in human non-small cell lung cancer.
        Cancer Res. 2004; 64: 1853-1860
      1. American Cancer Society. Cancer Facts and Figures 2004: Selected Cancers. American Cancer Society, 2004.

        • Garkavtsev I.
        • Kozin S.V.
        • Chernova O.
        • et al.
        The candidate tumour suppressor protein ING4 regulates brain tumour growth and angiogenesis.
        Nature. 2004; 428: 328-332
        • Wu J.L.
        • Abe T.
        • Inoue R.
        • Fujiki M.
        • Kobayashi H.
        IkappaBalphaM suppresses angiogenesis and tumorigenesis promoted by a constitutively active mutant EGFR in human glioma cells.
        Neurol Res. 2004; 26: 785-791
        • Xiong H.Q.
        • Abbruzzese J.L.
        • Lin E.
        • Wang L.
        • Zheng L.
        • Xie K.
        NF-kappaB activity blockade impairs the angiogenic potential of human pancreatic cancer cells.
        Int J Cancer. 2004; 108: 181-188
        • Sparmann A.
        • Bar-Sagi D.
        Ras-induced interleukin-8 expression plays a critical role in tumor growth and angiogenesis.
        Cancer Cell. 2004; 6: 447-458
        • Luan J.
        • Shattuck-Brandt R.
        • Haghnegahdar H.
        • et al.
        Mechanism and biological significance of constitutive expression of MGSA/GRO chemokines in malignant melanoma tumor progression.
        J Leukoc Biol. 1997; 62: 588-597
        • Owen J.D.
        • Strieter R.
        • Burdick M.
        • et al.
        Enhanced tumor-forming capacity for immortalized melanocytes expressing melanoma growth stimulatory activity/growth-regulated cytokine beta and gamma proteins.
        Int J Cancer. 1997; 73: 94-103
        • Yoneda J.
        • Kuniyasu H.
        • Crispens M.A.
        • Price J.E.
        • Bucana C.D.
        • Fidler I.J.
        Expression of angiogenesis-related genes and progression of human ovarian carcinomas in nude mice.
        J Natl Cancer Inst. 1998; 90: 447-454
        • Gawrychowski K.
        • Skopinska-Rozewska E.
        • Barcz E.
        • et al.
        Angiogenic activity and interleukin-8 content of human ovarian cancer ascites.
        Eur J Gynaecol Oncol. 1998; 19: 262-264
        • Smith D.R.
        • Polverini P.J.
        • et al.
        Inhibition of interleukin 8 attenuates angiogenesis in bronchogenic carcinoma.
        J Exp Med. 1994; 179: 1409-1415
        • Arenberg D.A.
        • Kunkel S.L.
        • Burdick M.D.
        • Polverini P.J.
        • Strieter R.M.
        Treatment with anti-IL-8 inhibits non-small cell lung cancer tumor growth.
        J Investig Med. 1995; 43: 479A
        • Yatsunami J.
        • Tsuruta N.
        • Ogata K.
        • et al.
        Interleukin-8 participates in angiogenesis in non-small cell, but not small cell carcinoma of the lung.
        Cancer Lett. 1997; 120: 101-108
        • White E.S.
        • Flaherty K.R.
        • Carskadon S.
        • et al.
        Macrophage migration inhibitory factor and CXC chemokine expression in non-small cell lung cancer: role in angiogenesis and prognosis.
        Clin Cancer Res. 2003; 9: 853-860
        • Chen J.J.
        • Yao P.L.
        • Yuan A.
        • et al.
        Up-regulation of tumor interleukin-8 expression by infiltrating macrophages: its correlation with tumor angiogenesis and patient survival in non-small cell lung cancer.
        Clin Cancer Res. 2003; 9: 729-737
        • Bostwick D.G.
        • Iczkowski K.A.
        Microvessel density in prostate cancer: prognostic and therapeutic utility.
        Semin Urol Oncol. 1998; 16: 118-123
        • Fregene T.A.
        • Khanuja P.S.
        • Noto A.C.
        • et al.
        Tumor-associated angiogenesis in prostate cancer.
        Anticancer Res. 1993; 13: 2377-2381
        • Kim S.J.
        • Uehara H.
        • Karashima T.
        • McCarty M.
        • Shih N.
        • Fidler I.J.
        Expression of interleukin-8 correlates with angiogenesis, tumorigenicity, and metastasis of human prostate cancer cells implanted orthotopically in nude mice.
        Neoplasia. 2001; 3: 33-42
        • Miller L.J.
        • Kurtzman S.H.
        • Wang Y.
        • Anderson K.H.
        • Lindquist R.R.
        • Kreutzer D.L.
        Expression of interleukin-8 receptors on tumor cells and vascular endothelial cells in human breast cancer tissue.
        Anticancer Res. 1998; 18: 77-81
        • Richards B.L.
        • Eisma R.J.
        • Spiro J.D.
        • Lindquist R.L.
        • Kreutzer D.L.
        Coexpression of interleukin-8 receptors in head and neck squamous cell carcinoma.
        Am J Surg. 1997; 174: 507-512
        • Kitadai Y.
        • Haruma K.
        • Sumii K.
        • et al.
        Expression of interleukin-8 correlates with vascularity in human gastric carcinomas.
        Am J Pathol. 1998; 152: 93-100
        • Singh R.K.
        • Gutman M.
        • Radinsky R.
        • Bucana C.D.
        • Fidler I.J.
        Expression of interleukin 8 correlates with the metastatic potential of human melanoma cells in nude mice.
        Cancer Res. 1994; 54: 3242-3247
        • Cohen R.F.
        • Contrino J.
        • Spiro J.D.
        • Mann E.A.
        • Chen L.L.
        • Kreutzer D.L.
        Interleukin-8 expression by head and neck squamous cell carcinoma.
        Arch Otolaryngol Head Neck Surg. 1995; 121: 202-209
        • Chen Z.
        • Malhotra P.S.
        • Thomas G.R.
        • et al.
        Expression of proinflammatory and proangiogenic cytokines in patients with head and neck cancer.
        Clin Cancer Res. 1999; 5: 1369-1379
        • Shellenberger T.D.
        • Wang M.
        • Gujrati M.
        • et al.
        BRAK/CXCL14 is a potent inhibitor of angiogenesis and is a chemotactic factor for immature dendritic cells.
        Cancer Res. 2004; 64: 8262-8270
        • Struyf S.
        • Burdick M.D.
        • Proost P.
        • Van Damme J.
        • Strieter R.M.
        Platelets release CXCL4L1, a nonallelic variant of the chemokine platelet factor-4/CXCL4 and potent inhibitor of angiogenesis.
        Circ Res. 2004; 95: 855-857
        • Maione T.E.
        • Gray G.S.
        • Petro J.
        • et al.
        Inhibition of angiogenesis by recombinant human platelet factor-4 and related peptides.
        Science. 1990; 247: 77-79
        • Rollins B.J.
        Chemokines.
        Blood. 1997; 90: 909-928
        • Balkwill F.
        The molecular and cellular biology of the chemokines.
        J Viral Hepat. 1998; 5: 1-14
        • Strieter R.M.
        • Belperio J.A.
        • Phillips R.J.
        • Keane M.P.
        CXC chemokines in angiogenesis of cancer.
        Semin Cancer Biol. 2004; 14: 195-200
        • Strieter R.M.
        • Belperio J.A.
        • Phillips R.J.
        • Keane M.P.
        Chemokines: angiogenesis and metastases in lung cancer.
        Novartis Found Symp. 2004; 256 (discussion 184–188, 259–269): 173-184
        • Sharma S.
        • Yang S.C.
        • Hillinger S.
        • et al.
        SLC/CCL21-mediated anti-tumor responses require IFNgamma, MIG/CXCL9 and IP-10/CXCL10.
        Mol Cancer. 2003; 2: 22
        • Hillinger S.
        • Yang S.C.
        • Zhu L.
        • et al.
        EBV-induced molecule1 ligand chemokine (ELC/CCL19) promotes IFN-gamma-dependent antitumor responses in a lung cancer model.
        J Immunol. 2003; 171: 6457-6465
        • Frederick M.J.
        • Henderson Y.
        • Xu X.
        • et al.
        In vivo expression of the novel CXC chemokine BRAK in normal and cancerous human tissue.
        Am J Pathol. 2000; 156: 1937-1950
        • Schwarze S.R.
        • Luo J.
        • Isaacs W.B.
        • Jarrard D.F.
        Modulation of CXCL14 (BRAK) expression in prostate cancer.
        Prostate. 2005; 13: 13
        • Bachelder R.E.
        • Wendt M.A.
        • Mercurio A.M.
        Vascular endothelial growth factor promotes breast carcinoma invasion in an autocrine manner by regulating the chemokine receptor CXCR4.
        Cancer Res. 2002; 62: 7203-7206
        • Salcedo R.
        • Oppenheim J.J.
        Role of chemokines in angiogenesis: CXCL12/SDF-1 and CXCR4 interaction, a key regulator of endothelial cell responses.
        Microcirculation. 2003; 10: 359-370
        • Kijowski J.
        • Baj-Krzyworzeka M.
        • Majka M.
        • et al.
        The SDF-1-CXCR4 axis stimulates VEGF secretion and activates integrins but does not affect proliferation and survival in lymphohematopoietic cells.
        Stem Cells. 2001; 19: 453-466
        • Salcedo R.
        • Wasserman K.
        • Young H.A.
        • et al.
        Vascular endothelial growth factor and basic fibroblast growth factor induce expression of CXCR4 on human endothelial cells: in vivo neovascularization induced by stromal-derived factor-1alpha.
        Am J Pathol. 1999; 154: 1125-1135
        • Schrader A.J.
        • Lechner O.
        • Templin M.
        • et al.
        CXCR4/CXCL12 expression and signalling in kidney cancer.
        Br J Cancer. 2002; 86: 1250-1256
        • Muller A.
        • Homey B.
        • Soto H.
        • et al.
        Involvement of chemokine receptors in breast cancer metastasis.
        Nature. 2001; 410: 50-56
        • Phillips R.J.
        • Burdick M.D.
        • Lutz M.
        • Belperio J.A.
        • Keane M.P.
        • Strieter R.M.
        The stromal derived factor-1/CXCL12-CXC chemokine receptor4 biological axis in non-small cell lung cancer metastases.
        Am J Respir Crit Care Med. 2003; 167: 1676-1686
        • Loetscher M.
        • Loetscher P.
        • Brass N.
        • Meese E.
        • Moser B.
        Lymphocyte-specific chemokine receptor CXCR3: regulation, chemokine binding and gene localization.
        Eur J Immunol. 1998; 28: 3696-3705
        • Ehlert J.E.
        • Addison C.A.
        • Burdick M.D.
        • Kunkel S.L.
        • Strieter R.M.
        Identification and partial characterization of a variant of human CXCR3 generated by posttranscriptional exon skipping.
        J Immunol. 2004; 173: 6234-6240
        • Moser B.
        • Loetscher P.
        Lymphocyte traffic control by chemokines.
        Nat Immunol. 2001; 2: 123-128
        • Loetscher M.
        • Gerber B.
        • Loetscher P.
        • et al.
        Chemokine receptor specific for IP10 and mig: structure, function, and expression in activated T-lymphocytes.
        J Exp Med. 1996; 184: 963-969
        • Rabin R.L.
        • Park M.K.
        • Liao F.
        • Swofford R.
        • Stephany D.
        • Farber J.M.
        Chemokine receptor responses on T cells are achieved through regulation of both receptor expression and signaling.
        J Immunol. 1999; 162: 3840-3850
        • Qin S.
        • Rottman J.B.
        • Myers P.
        • et al.
        The chemokine receptors CXCR3 and CCR5 mark subsets of T cells associated with certain inflammatory reactions.
        J Clin Invest. 1998; 101: 746-754
        • Beider K.
        • Nagler A.
        • Wald O.
        • et al.
        Involvement of CXCR4 and IL-2 in the homing and retention of human NK and NK T cells to the bone marrow and spleen of NOD/SCID mice.
        Blood. 2003; 102: 1951-1958
        • Soto H.
        • Wang W.
        • Strieter R.M.
        • et al.
        The CC chemokine 6Ckine binds the CXC chemokine receptor CXCR3.
        Proc Natl Acad Sci USA. 1998; 95: 8205-8210
        • Romagnani P.
        • Annunziato F.
        • Lasagni L.
        • et al.
        Cell cycle-dependent expression of CXC chemokine receptor 3 by endothelial cells mediates angiostatic activity.
        J Clin Invest. 2001; 107: 53-63
        • Salcedo R.
        • Resau J.H.
        • Halverson D.
        • et al.
        Differential expression and responsiveness of chemokine receptors (CXCR1-3) by human microvascular endothelial cells and umbilical vein endothelial cells.
        FASEB J. 2000; 14: 2055-2064
        • Lasagni L.
        • Francalanci M.
        • Annunziato F.
        • et al.
        An alternatively spliced variant of CXCR3 mediates the inhibition of endothelial cell growth induced by IP-10, Mig, and I-TAC, and acts as functional receptor for platelet factor 4.
        J Exp Med. 2003; 197: 1537-1549
        • Yang J.
        • Richmond A.
        The angiostatic activity of interferon-inducible protein-10/CXCL10 in human melanoma depends on binding to CXCR3 but not to glycosaminoglycan.
        Mol Ther. 2004; 9: 846-855
        • Burdick M.D.
        • Murray L.A.
        • Keane M.P.
        • et al.
        CXCL11 attenuates bleomycin-induced pulmonary fibrosis via inhibition of vascular remodeling.
        Am J Respir Crit Care Med. 2005; 171: 261-268
        • Arenberg D.A.
        • Kunkel S.L.
        • Polverini P.J.
        • et al.
        Interferon-gamma-inducible protein 10 (IP-10) is an angiostatic factor that inhibits human non-small cell lung cancer (NSCLC) tumorigenesis and spontaneous metastases.
        J Exp Med. 1996; 184: 981-992
        • Minna J.D.
        Neoplasms if the lung.
        in: Isselbacher K.J. Principles of internal medicine. 12th ed. McGraw-Hill, New York1991: 1102-1110
        • Carney D.N.
        Cancers of the lungs.
        in: Carney Fishman A.P. Pulmonary diseases and disorders. 2nd ed. McGraw-Hill, New York1988: 1885-2068
        • Yuan A.
        • Pan-Chyr Y.
        • Chong-Jen Y.
        • et al.
        Tumor angiogenesis correlates with histologic type and metastasis in non-small cell lung cancer.
        Am J Resp Crit Care Med. 1995; 152: 2157-2162
        • Feldman A.L.
        • Friedl J.
        • Lans T.E.
        • et al.
        Retroviral gene transfer of interferon-inducible protein 10 inhibits growth of human melanoma xenografts.
        Int J Cancer. 2002; 99: 149-153
        • Addison C.L.
        • Arenberg D.A.
        • Morris S.B.
        • et al.
        The CXC chemokine, monokine induced by interferon-gamma, inhibits non-small cell lung carcinoma tumor growth and metastasis.
        Hum Gene Ther. 2000; 11: 247-261
        • Sharma S.
        • Stolina M.
        • Luo J.
        • et al.
        Secondary lymphoid tissue chemokine mediates T cell-dependent antitumor responses in vivo.
        J Immunol. 2000; 164: 4558-4563
        • Tannenbaum C.S.
        • Tubbs R.
        • Armstrong D.
        • Finke J.H.
        • Bukowski R.M.
        • Hamilton T.A.
        The CXC chemokines IP-10 and Mig are necessary for IL-12-mediated regression of the mouse RENCA tumor.
        J Immunol. 1998; 161: 927-932