Advertisement

Inflammation, proteases and cancer

  • Léon C.L. van Kempen
    Affiliations
    Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Geert Grooteplein 24, 6525GA Nijmegen, The Netherlands

    Department of Pathology, Radboud University Nijmegen Medical Centre, Geert Grooteplein 24, 6525GA Nijmegen, The Netherlands
    Search for articles by this author
  • Karin E. de Visser
    Affiliations
    Department of Molecular Biology, The Netherlands Cancer Institute/Antoni van Leeuwenhoek Hospital, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
    Search for articles by this author
  • Lisa M. Coussens
    Correspondence
    Corresponding author: Tel.: +1 415 502 6378; fax: +1 415 514 0878.
    Affiliations
    Cancer Research Institute, University of California, 2340 Sutter Street, N-221, San Francisco, CA 94143, USA

    Department of Pathology, University of California, 2340 Sutter Street, N-221, San Francisco, CA 94143, USA

    Comprehensive Cancer Center, University of California, 2340 Sutter Street, N-221, San Francisco, CA 94143, USA
    Search for articles by this author

      Abstract

      Tumours are complex tissues composed of ever-evolving neoplastic cells, matrix proteins that provide structural support and sequester biologically active molecules, and a cellular stromal component. Reciprocal interactions between neoplastic cells, activated host cells and the dynamic micro-environment in which they live enables tumour growth and dissemination. It has become evident that early and persistent inflammatory responses observed in or around developing neoplasms regulates many aspects of tumour development (matrix remodelling, angiogenesis, malignant potential) by providing diverse mediators implicated in maintaining tissue homeostasis, e.g., soluble growth and survival factors, matrix remodelling enzymes, reactive oxygen species and other bioactive molecules. This review highlights recent insights into the role of chronic inflammation associated with cancer development and examines proteolytic pathways activated by infiltrating leukocytes during neoplastic programming of tissues.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to European Journal of Cancer
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Albertson D.G.
        • Collins C.
        • McCormick F.
        • Gray J.W.
        Chromosome aberrations in solid tumors.
        Nat Genet. 2003; 4: 369-376
        • Weir B.
        • Zhao X.
        • Meyerson M.
        Somatic alterations in the human cancer genome.
        Cancer Cell. 2004; 6: 433-438
        • Hanahan D.
        • Weinberg R.A.
        The hallmarks of cancer.
        Cell. 2000; 100: 57-70
        • McCormick F.
        Cancer: survival pathways meet their end.
        Nature. 2004; 428: 267-269
        • Coussens L.M.
        • Werb Z.
        Inflammation and cancer.
        Nature. 2002; 420: 860-867
        • Balkwill F.
        • Charles K.A.
        • Mantovani A.
        Smoldering and polarized inflammation in the initiation and promotion of malignant disease.
        Cancer Cell. 2005; 7: 211-217
        • Balkwill F.
        • Mantovani A.
        Inflammation and cancer: back to Virchow?.
        Lancet. 2001; 357: 539-545
        • de Visser K.E.
        • Eichten A.
        • Coussens L.M.
        Paradoxical roles of the immune system during cancer development.
        Nat Rev Cancer. 2006; 6: 24-37
        • Thun M.J.
        • Henley S.J.
        • Gansler T.
        Inflammation and cancer: an epidemiological perspective.
        Novartis Found Symp. 2004; 256: 6-21
        • Clevers H.
        At the crossroads of inflammation and cancer.
        Cell. 2004; 118: 671-674
        • Shacter E.
        • Weitzman S.A.
        Chronic inflammation and cancer.
        Oncology. 2002; 16: 217-226
        • Pollard J.W.
        Tumour-educated macrophages promote tumour progression and metastasis.
        Nat Rev Cancer. 2004; 4: 71-78
        • Balkwill F.
        Cancer and the chemokine network.
        Nat Rev Cancer. 2004; 4: 540-550
        • Lin E.Y.
        • Nguyen A.V.
        • Russell R.G.
        • Pollard J.W.
        Colony-stimulating factor 1 promotes progression of mammary tumors to malignancy.
        J Exp Med. 2001; 193: 727-740
        • Wyckoff J.
        • Wang W.
        • Lin E.Y.
        • et al.
        A paracrine loop between tumor cells and macrophages is required for tumor cell migration in mammary tumors.
        Cancer Res. 2004; 64: 7022-7029
        • Lewis C.E.
        • Murdoch C.
        Macrophage responses to hypoxia: implications for tumor progression and anti-cancer therapies.
        Am J Pathol. 2005; 167: 627-635
        • Murdoch C.
        • Lewis C.E.
        Macrophage migration and gene expression in response to tumor hypoxia.
        Int J Cancer. 2005; 117: 701-708
        • Coussens L.M.
        • Hanahan D.
        • Arbeit J.M.
        Genetic predisposition and parameters of malignant progression in K14-HPV16 transgenic mice.
        Am J Path. 1996; 149: 1899-1917
        • Coussens L.M.
        • Raymond W.W.
        • Bergers G.
        • et al.
        Inflammatory mast cells up-regulate angiogenesis during squamous epithelial carcinogenesis.
        Gene Dev. 1999; 13: 1382-1397
        • de Visser K.E.
        • Korets L.V.
        • Coussens L.M.
        De novo carcinogenesis promoted by chronic inflammation is B lymphocyte dependent.
        Cancer Cell. 2005; 7: 411-423
        • Welch D.R.
        • Schissel D.J.
        • Howrey R.P.
        • Aeed P.A.
        Tumor-elicited polymorphonuclear cells, in contrast to ‘normal’ circulating polymorphonuclear cells, stimulate invasive and metastatic potentials of rat mammary adenocarcinoma cells.
        Proc Natl Acad Sci. 1989; 86: 5859-5863
        • Josephy P.D.
        • Coomber B.L.
        The 1996 Veylien Henderson Award of the Society of Toxicology of Canada. Current concepts: neutrophils and the activation of carcinogens in the breast and other organs.
        Can J Physiol Pharmacol. 1998; 76: 693-700
        • Houghton J.
        • Stoicov C.
        • Nomura S.
        • et al.
        Gastric cancer originating from bone marrow-derived cells.
        Science. 2004; 306: 1568-1571
        • Ying L.
        • Marino J.
        • Hussain S.P.
        • et al.
        Chronic inflammation promotes retinoblastoma protein hyperphosphorylation and E2F1 activation.
        Cancer Res. 2005; 65: 9132-9136
        • Coussens L.M.
        • Tinkle C.L.
        • Hanahan D.
        • Werb Z.
        MMP-9 supplied by bone marrow-derived cells contributes to skin carcinogenesis.
        Cell. 2000; 103: 481-490
        • Yang L.
        • Debusk L.M.
        • Fukuda K.
        • et al.
        Expansion of myeloid immune suppressor Gr+CD11b+ cells in tumor-bearing host directly promotes tumor angiogenesis.
        Cancer Cell. 2004; 6: 409-421
        • Bergers G.
        • Brekken R.
        • McMahon G.
        • et al.
        Matrix metalloproteinase-9 triggers the angiogenic switch during carcinogenesis.
        Nat Cell Biol. 2000; 2: 737-744
        • Hiratsuka S.
        • Nakamura K.
        • Iwai S.
        • et al.
        MMP9 induction by vascular endothelial growth factor receptor-1 is involved in lung-specific metastasis.
        Cancer Cell. 2002; 2: 289-300
        • de Visser K.E.
        • Coussens L.M.
        Inflammation and matrix metalloproteinases: implications for cancer development.
        in: Morgan D.W. Forssmann U.J. Nakada M.T. Cancer and inflammation. Birkhauser Verlag, Basel, Switzerland2004: 71-97
        • Diaz R.J.
        • Eichten A.E.
        • de Visser K.E.
        • Coussens L.M.
        Matrix metalloproteinases: mediators of tumour-host interactions.
        in: Meadows G. Fundamental aspects of cancer: cancer growth and progression. Kluwer Academic, The Netherlands2005: 77-118
        • Egeblad M.
        • Werb Z.
        New functions for the matrix metalloproteinases in cancer progression.
        Nat Rev Cancer. 2002; 2: 161-174
        • de Visser K.E.
        • Korets L.V.
        • Coussens L.M.
        Early neoplastic progression is complement independent.
        Neoplasia. 2004; 6: 768-776
        • Giraudo E.
        • Inoue M.
        • Hanahan D.
        An amino-bisphosphonate targets MMP-9-expressing macrophages and angiogenesis to impair cervical carcinogenesis.
        J Clin Invest. 2004; 114: 623-633
        • van Kempen L.C.L.
        • Rhee J.S.
        • Dehne K.
        • et al.
        Epithelial carcinogenesis: dynamic interplay between neoplastic cells and their microenvironment.
        Differentiation. 2002; 70: 501-623
        • Huang S.
        • Van Arsdall M.
        • Tedjarati S.
        • et al.
        Contributions of stromal metalloproteinase-9 to angiogenesis and growth of human ovarian carcinoma in mice.
        J Natl Cancer Inst. 2002; 94: 1134-1142
        • Overall C.M.
        • McQuibban G.A.
        • Clark-Lewis I.
        Discovery of chemokine substrates for matrix metalloproteinases by exosite scanning: a new tool for degradomics.
        Biol Chem. 2002; 383: 1059-1066
        • Lynch C.C.
        • Hikosaka A.
        • Acuff H.B.
        • et al.
        MMP-7 promotes prostate cancer-induced osteolysis via the solubilization of RANKL.
        Cancer Cell. 2005; 7: 485-496
        • Coleman R.E.
        Bisphosphonates in breast cancer.
        Ann Oncol. 2005; 16: 687-695
        • Sheu B.C.
        • Hsu S.M.
        • Ho H.N.
        • et al.
        A novel role of metalloproteinase in cancer-mediated immunosuppression.
        Cancer Res. 2001; 61: 237-242
        • Yu W.H.
        • Woessner J.F.
        • McNeish J.D.
        • Stamenkovic I.
        CD44 anchors the assembly of matrilysin/MMP-7 with heparin-binding epidermal growth factor precursor and ErbB4 and regulates female reproductive organ remodeling.
        Gene Dev. 2002; 16: 307-323
        • Balbin M.
        • Fueyo A.
        • Tester A.M.
        • et al.
        Loss of collagenase-2 confers increased skin tumor susceptibility to male mice.
        Nat Genet. 2003; 35: 252-257
        • Di Girolamo N.
        • Wakefield D.
        In vitro and in vivo expression of interstitial collagenase/MMP-1 by human mast cells.
        Dev Immunol. 2000; 7: 131-142
        • Irani A.M.
        • Schwartz L.B.
        Mast cell heterogeneity.
        Clin Exp Allergy. 1989; 19: 143-155
        • Gruber B.L.
        • Kew R.R.
        • Jelaska A.
        • et al.
        Human mast cells activate fibroblasts: tryptase is a fibrogenic factor stimulating collagen messenger ribonucleic acid synthesis and fibroblast chemotaxis.
        J Immunol. 1997; 158: 2310-2317
        • Cairns J.A.
        • Walls A.F.
        Mast cell tryptase stimulates the synthesis of type I collagen in human lung fibroblasts.
        J Clin Invest. 1997; 99: 1313-1321
        • Schramm R.
        • Schaefer T.
        • Menger M.D.
        • Thorlacius H.
        Acute mast cell-dependent neutrophil recruitment in the skin is mediated by KC and LFA-1: inhibitory mechanisms of dexamethasone.
        J Leukoc Biol. 2002; 72: 1122-1132
        • Chen R.
        • Ning G.
        • Zhao M.L.
        • et al.
        Mast cells play a key role in neutrophil recruitment in experimental bullous pemphigoid.
        J Clin Invest. 2001; 108: 1151-1158
        • Ajuebor M.N.
        • Das A.M.
        • Virag L.
        • et al.
        Role of resident peritoneal macrophages and mast cells in chemokine production and neutrophil migration in acute inflammation: evidence for an inhibitory loop involving endogenous IL-10.
        J Immunol. 1999; 162: 1685-1691
        • Taylor A.
        Collagenolysis in cultured tissue: role of mast cells.
        J Dental Res. 1971; 50: 1301-1306
        • Kofford M.W.
        • Schwartz L.B.
        • Schechter N.M.
        • et al.
        Cleavage of type I procollagen by human mast cell chymase initiates collagen fibril formation and generates a unique carboxyl-terminal propeptide.
        J Biol Chem. 1997; 272: 7127-7131
        • Saarinen J.
        • Kalkkinen N.
        • Welgus H.G.
        • Kovanen P.T.
        Activation of human interstitial procollagenase through direct cleavage of the Leu83-Thr84 bond by mast cell chymase.
        J Biol Chem. 1994; 269: 18134-18140
        • Fang K.C.
        • Raymond W.W.
        • Lazarus S.C.
        • Caughey G.H.
        Dog mastocytoma cells secrete a 92-kD gelatinase activated extracellularly by mast cell chymase.
        J Clin Invest. 1996; 97: 1589-1596
        • Tchougounova E.
        • Pejler G.
        • Abrink M.
        The chymase, mouse mast cell protease 4, constitutes the major chymotrypsin-like activity in peritoneum and ear tissue. A role for mouse mast cell protease 4 in thrombin regulation and fibronectin turnover.
        J Exp Med. 2003; 198: 423-431
        • Tchougounova E.
        • Lundequist A.
        • Fajardo I.
        • et al.
        A key role for mast cell chymase in the activation of pro-matrix metalloprotease-9 and pro-matrix metalloprotease-2.
        J Biol Chem. 2005; 280: 9291-9296
        • Diekmann O.
        • Tschesche H.
        Degradation of kinins, angiotensins and substance P by polymorphonuclear matrix metalloproteinases MMP 8 and MMP 9.
        Braz J Med Biol Res. 1994; 27: 1865-1876
        • Lundequist A.
        • Tchougounova E.
        • Abrink M.
        • Pejler G.
        Cooperation between mast cell carboxypeptidase A and the chymase mouse mast cell protease 4 in the formation and degradation of angiotensin II.
        J Biol Chem. 2004; 279: 32339-32344
        • Grutzkau A.
        • Kruger-Krasagakes S.
        • Baumeister H.
        • et al.
        Synthesis, storage, and release of vascular endothelial growth factor/vascular permeability factor (VEGF/VPF) by human mast cells: implications for the biological significance of VEGF206.
        Mol Biol Cell. 1998; 9: 875-884
        • Turk V.
        • Kos J.
        • Turk B.
        Cysteine cathepsins (proteases) – on the main stage of cancer?.
        Cancer Cell. 2004; 5: 409-410
        • Chapman H.A.
        • Riese R.J.
        • Shi G.P.
        Emerging roles for cysteine proteases in human biology.
        Annu Rev Physiol. 1997; 59: 63-88
        • Joyce J.A.
        • Baruch A.
        • Chehade K.
        • et al.
        Cathepsin cysteine proteases are effectors of invasive growth and angiogenesis during multistage tumorigenesis.
        Cancer Cell. 2004; 5: 443-453
        • Pikarsky E.
        • Porat R.M.
        • Stein I.
        • et al.
        NF-kappaB functions as a tumour promoter in inflammation-associated cancer.
        Nature. 2004; 431: 461-466
        • Greten F.R.
        • Eckmann L.
        • Greten T.F.
        • et al.
        IKKbeta links inflammation and tumorigenesis in a mouse model of colitis-associated cancer.
        Cell. 2004; 118: 285-296
        • Balkwill F.
        • Coussens L.M.
        Cancer: an inflammatory link.
        Nature. 2004; 431: 405-406
        • Balkwill F.
        Tumor necrosis factor or tumor promoting factor?.
        Cytokine Growth Factor Rev. 2002; 13: 135-141
        • Black R.A.
        • Rauch C.T.
        • Kozlosky C.J.
        • et al.
        A metalloproteinase disintegrin that releases tumour-necrosis factor-alpha from cells.
        Nature. 1997; 385: 729-733
        • Mohammed F.F.
        • Smookler D.S.
        • Taylor S.E.
        • et al.
        Abnormal TNF activity in Timp3−/− mice leads to chronic hepatic inflammation and failure of liver regeneration.
        Nat Genet. 2004; 36: 969-977
        • Murphy G.
        • Knauper V.
        • Lee M.H.
        • et al.
        Role of TIMPs (tissue inhibitors of metalloproteinases) in pericellular proteolysis: the specificity is in the detail.
        Biochem Soc Symp. 2003; 70: 65-80
        • Mahmoodi M.
        • Sahebjam S.
        • Smookler D.
        • Khokha R.
        • Mort J.S.
        Lack of tissue inhibitor of metalloproteinases-3 results in an enhanced inflammatory response in antigen-induced arthritis.
        Am J Pathol. 2005; 166: 1733-1740
        • Cruz-Munoz W.
        • Kim I.
        • Khokha R.
        TIMP-3 deficiency in the host, but not in the tumor, enhances tumor growth and angiogenesis.
        Oncogene. 2006; 25: 650-655
        • Turini M.E.
        • DuBois R.N.
        Cyclooxygenase-2: a therapeutic target.
        Ann Rev Med. 2002; 53: 35-37
        • Fuchs E.
        • Raghavan S.
        Getting under the skin of epidermal morphogenesis.
        Nat Rev Genet. 2002; 3: 199-209
        • Seitz C.S.
        • Lin Q.
        • Deng H.
        • Khavari P.A.
        Alterations in NF-kappaB function in transgenic epithelial tissue demonstrate a growth inhibitory role for NF-kappaB.
        Proc Natl Acad Sci. 1998; 95: 2307-2312
        • Maeda S.
        • Kamata H.
        • Luo J.L.
        • Leffert H.
        • Karin M.
        IKKbeta couples hepatocyte death to cytokine-driven compensatory proliferation that promotes chemical hepatocarcinogenesis.
        Cell. 2005; 121: 977-990
        • Scott K.A.
        • Moore R.J.
        • Arnott C.H.
        • et al.
        An anti-tumor necrosis factor-alpha antibody inhibits the development of experimental skin tumors.
        Mol Cancer Ther. 2003; 2: 445-451
        • Szlosarek P.W.
        • Balkwill F.R.
        Tumour necrosis factor alpha: a potential target for the therapy of solid tumours.
        Lancet Oncol. 2003; 4: 565-573
        • Coussens L.M.
        • Fingleton B.
        • Matrisian L.M.
        Matrix metalloproteinase inhibitors and cancer: trials and tribulations.
        Science. 2002; 295: 2387-2392