Advertisement

Tumour-associated macrophages are a distinct M2 polarised population promoting tumour progression: Potential targets of anti-cancer therapy

      Abstract

      Tumour-associated macrophages (TAM) represent the major inflammatory component of the stroma of many tumours, and can affect different aspects of the neoplastic tissue. Many observations indicate that TAM express several M2-associated pro-tumoural functions, including promotion of angiogenesis, matrix remodelling and suppression of adaptive immunity. The pro-tumoural role of TAM in cancer is further supported by clinical studies that found a correlation between the high macrophage content of tumours and poor patient prognosis. Evidence is presented here supporting the view that TAM represent a unique and distinct M2-skewed myeloid population and are a potential target for anti-cancer therapy.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to European Journal of Cancer
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Balkwill F.
        • Mantovani A.
        Inflammation and cancer: back to Virchow?.
        Lancet. 2001; 357: 539-545
        • Mantovani A.
        • Sozzani S.
        • Locati M.
        • Allavena P.
        • Sica A.
        Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes.
        Trends Immunol. 2002; 23: 549-555
        • Balkwill F.
        • Charles K.A.
        • Mantovani A.
        Smoldering and polarized inflammation in the initiation and promotion of malignant disease.
        Cancer Cell. 2005; 7: 211-217
        • Bottazzi B.
        • Polentarutti N.
        • Acero R.
        • et al.
        Regulation of the macrophage content of neoplasms by chemoattractants.
        Science. 1983; 220: 210-212
        • Matsushima K.
        • Larsen C.G.
        • DuBois G.C.
        • Oppenheim J.J.
        Purification and characterization of a novel monocyte chemotactic and activating factor produced by a human myelomonocytic cell line.
        J Exp Med. 1999; 169: 1485-1490
        • Yoshimura T.
        • Robinson E.A.
        • Tanaka S.
        • Appella E.
        • Kuratsu J.
        • Leonard E.J.
        Purification and aminoacid analysis of two human glioma-derived monocyte chemoattractants.
        J Exp Med. 1989; 169: 1449-1459
        • Rollins B.
        Chemokines and Cancer.
        Humana Press, Totowa, NJ1999
        • Mantovani A.
        The chemokine system: redundancy for robust outputs.
        Immunol Today. 1999; 20: 254-257
        • Yang J.
        • Richmond A.
        Constitutive IkappaB kinase activity correlates with nuclear factor-kappaB activation in human melanoma cells.
        Cancer Res. 2001; 61: 4901-4909
        • Balkwill F.
        Cancer and the chemokine network.
        Nat Rev Cancer. 2004; 4: 540-550
        • Conti I.
        • Rollins B.J.
        CCL2 (monocyte chemoattractant protein-1) and cancer.
        Semin Cancer Biol. 2004; 14: 149-154
        • Ueno T.
        • Toi M.
        • Saji H.
        • et al.
        Significance of macrophage chemoattractant protein-1 in macrophage recruitment, angiogenesis, and survival in human breast cancer.
        Clin Cancer Res. 2000; 6: 3282-3389
        • Van Damme J.
        • Proost P.
        • Lenaerts J.P.
        • Opdenakker G.
        Structural and functional identification of two human, tumor-derived monocyte chemotactic proteins (MCP-2 and MCP-3) belonging to the chemokine family.
        J Exp Med. 1992; 176: 59-65
        • Azenshtein E.
        • Luboshits G.
        • Shina S.
        • et al.
        The CC chemokine RANTES in breast carcinoma progression: regulation of expression and potential mechanisms of promalignant activity.
        Cancer Res. 2002; 62: 1093-1102
        • Saji H.
        • Koike M.
        • Yamori T.
        • et al.
        Significant correlation of monocyte chemoattractant protein-1 expression with neovascularization and progression of breast carcinoma.
        Cancer. 2001; 92: 1085-1091
        • Nesbit M.
        • Schaider H.
        • Miller T.H.
        • Herlyn M.
        Low-level monocyte chemoattractant protein-1 stimulation of monocytes leads to tumor formation in nontumorigenic melanoma cells.
        J Immunol. 2001; 166: 6483-6490
        • Monti P.
        • Leone B.E.
        • Marchesi F.
        • et al.
        The CC chemokine MCP-1/CCL2 in pancreatic cancer progression: regulation of expression and potential mechanisms of antimalignant activity.
        Cancer Res. 2003; 63: 7451-7461
        • Bingle L.
        • Brown N.J.
        • Lewis C.E.
        The role of tumour-associated macrophages in tumour progression: implications for new anticancer therapies.
        J Pathol. 2000; 196: 254-265
        • Lin E.Y.
        • Nguyen A.V.
        • Russell R.G.
        • Pollard J.W.
        Colony-stimulating factor 1 promotes progression of mammary tumors to malignancy.
        J Exp Med. 2001; 193: 727-740
        • Duyndam M.C.
        • Hilhorst M.C.
        • Schluper H.M.
        • et al.
        Vascular endothelial growth factor-165 overexpression stimulates angiogenesis and induces cyst formation and macrophage infiltration in human ovarian cancer xenografts.
        Am J Pathol. 2002; 160: 537-548
        • Nowicki A.
        • Szenajch J.
        • Ostrowska G.
        • et al.
        Impaired tumor growth in colony-stimulating factor 1 (CSF-1)-deficient, macrophage-deficient op/op mouse: evidence for a role of CSF-1-dependent macrophages in formation of tumor stroma.
        Int J Cancer. 1996; 65: 112-119
        • Aharinejad S.
        • Abraham D.
        • Paulus P.
        • et al.
        Colony-stimulating factor-1 antisense treatment suppresses growth of human tumor xenografts in mice.
        Cancer Res. 2002; 62: 5317-5324
        • Pollard J.W.
        Tumour-educated macrophages promote tumour progression and metastasis.
        Nat Rev Cancer. 2004; 4: 71-78
        • Adini A.
        • Kornaga T.
        • Firoozbakht F.
        • Benjamin L.E.
        Placental growth factor is a survival factor for tumor endothelial cells and macrophages.
        Cancer Res. 2002; 62: 2749-2752
        • Bell D.
        • Chomarat P.
        • Broyles D.
        • et al.
        In breast carcinoma tissue, immature dendritic cells reside within the tumor, whereas mature dendritic cells are located in peritumoral areas.
        J Exp Med. 1999; 190: 1417-1426
        • Scarpino S.
        • Stoppacciaro A.
        • Ballerini F.
        • et al.
        Papillary carcinoma of the thyroid: hepatocyte growth factor (HGF) stimulates tumor cells to release chemokines active in recruiting dendritic cells.
        Am J Pathol. 2000; 156: 831-837
        • Vermi W.
        • Bonecchi R.
        • Facchetti F.
        • et al.
        Recruitment of immature plasmacytoid dendritic cells (plasmacytoid monocytes) and myeloid dendritic cells in primary cutaneous melanomas.
        J Pathol. 2003; 200: 255-268
        • Zou W.
        • Machelon V.
        • Coulomb-L’Hermin A.
        • et al.
        Stromal-derived factor-1 in human tumors recruits and alters the function of plasmacytoid precursor dendritic cells.
        Nat Med. 2001; 7: 1339-1346
        • Vicari A.P.
        • Caux C.
        Chemokines in cancer.
        Cytokine Growth Factor Rev. 2002; 13: 143-154
        • Allavena P.
        • Sica A.
        • Vecchi A.
        • Locati M.
        • Sozzani S.
        • Mantovani A.
        The chemokine receptor switch paradigm and dendritic cell migration: its significance in tumor tissues.
        Immunol Rev. 2000; 177: 141-149
        • Vicari A.P.
        • Treilleux I.
        • Lebecque S.
        Regulation of the trafficking of tumour-infiltrating dendritic cells by chemokines.
        Semin Cancer Biol. 2004; 14: 161-169
        • Salio M.
        • Cella M.
        • Vermi W.
        • et al.
        Plasmacytoid dendritic cells prime IFN-gamma-secreting melanoma-specific CD8 lymphocytes and are found in primary melanoma lesions.
        Eur J Immunol. 2003; 33: 1052-1062
        • Chomarat P.
        • Banchereau J.
        • Davoust J.
        • Palucka A.K.
        IL-6 switches the differentiation of monocytes from dendritic cells to macrophages.
        Nat Immunol. 2000; 1: 510-514
        • Banchereau J.
        • Palucka A.K.
        Dendritic cells as therapeutic vaccines against cancer.
        Nat Rev Immunol. 2005; 5: 296-306
        • Steinman R.M.
        • Mellman I.
        Immunotherapy: bewitched, bothered, and bewildered no more.
        Science. 2004; 305: 197-200
        • Ardavin C.
        • Amigorena S.
        • Reis e Sousa C.
        Dendritic cells: immunobiology and cancer immunotherapy.
        Immunity. 2004; 20: 17-23
        • Steinman R.M.
        • Hawiger D.
        • Nussenzweig M.C.
        Tolerogenic dendritic cells.
        Annu Rev Immunol. 2003; 21: 685-711
        • Rutella S.
        • Lemoli R.M.
        Regulatory T cells and tolerogenic dendritic cells: from basic biology to clinical applications.
        Immunol Lett. 2004; 94: 11-26
        • Mantovani A.
        • Sica A.
        • Sozzani S.
        • Allavena P.
        • Vecchi A.
        • Locati M.
        The chemokine system in diverse forms of macrophage activation and polarization.
        Trends Immunol. 2004; 25: 677-686
        • Sher A.
        • Pearce E.
        • Kaye P.
        Shaping the immune response to parasites: role of dendritic cells.
        Curr Opin Immunol. 2003; 15: 421-429
        • Gordon S.
        Alternative activation of macrophages.
        Nat Rev Immunol. 2003; 3: 23-35
        • Anderson C.F.
        • Mosser D.M.
        novel phenotype for an activated macrophage: the type 2 activated macrophage.
        J Leukoc Biol. 2002; 72: 101-106
        • Goerdt S.
        • Orfanos C.E.
        Other functions, other genes: alternative activation of antigen-presenting cells.
        Immunity. 1999; 10: 137-142
        • Mantovani A.
        • Allavena P.
        • Sica A.
        Tumour-associated macrophages as a prototypic type II polarised phagocyte population: role in tumour progression.
        Eur J Cancer. 2004; 40: 1660-1667
        • Verreck F.A.
        • de Boer T.
        • Langenberg D.M.
        • et al.
        Human IL-23-producing type 1 macrophages promote but IL-10-producing type 2 macrophages subvert immunity to (myco) bacteria.
        Proc Natl Acad Sci USA. 2004; 101: 4560-4565
        • Mosser D.M.
        The many faces of macrophage activation.
        J Leukoc Biol. 2003; 73: 209-212
        • Dinarello C.A.
        Interleukin-1 and interleukin-1 antagonism.
        Blood. 1991; 77: 1627-1652
        • Mosser D.M.
        • Karp C.L.
        Receptor mediated subversion of macrophage cytokine production by intracellular pathogens.
        Curr Opin Immunol. 1999; 11: 406-411
        • Sica A.
        • Saccani A.
        • Bottazzi B.
        • et al.
        Autocrine production of IL-10 mediates defective IL-12 production and NF-κB activation in tumor-associated macrophages.
        J Immunol. 2000; 164: 762-767
        • Dinapoli M.R.
        • Calderon C.L.
        • Lopez D.M.
        The altered tumoricidal capacity of macrophages isolated from tumor-bearing mice is related to reduced expression of the inducible nitric oxide synthase gene.
        J Exp Med. 1996; 183: 1323-1329
        • Klimp A.H.
        • Hollema H.
        • Kempinga C.
        • van der Zee A.G.
        • de Vries E.G.
        • Daemen T.
        Expression of cyclooxygenase-2 and inducible nitric oxide synthase in human ovarian tumors and tumor-associated macrophages.
        Cancer Res. 2001; 61: 7305-7309
        • Van den Brule F.
        • Califice S.
        • Garnier F.
        • Fernandez P.L.
        • Berchuck A.
        • Castronovo V.
        Galectin-1 accumulation in the ovary carcinoma peritumoral stroma is induced by ovary carcinoma cells and affects both cancer cell proliferation and adhesion to laminin-1 and fibronectin.
        Lab Invest. 2003; 83: 377-386
        • Schoppmann S.F.
        • Birner P.
        • Stockl J.
        • et al.
        Tumor-associated macrophages express lymphatic endothelial growth factors and are related to peritumoral lymphoangiogenesis.
        Am J Pathol. 2002; 161: 947-956
        • Hotchkiss K.A.
        • Ashton A.W.
        • Klein R.S.
        • Lenzi M.L.
        • Zhu G.H.
        • Schwartz E.L.
        Mechanisms by which tumor cells and monocytes expressing the angiogenic factor thymidine phosphorylase mediate human endothelial cell migration.
        Cancer Res. 2003; 63: 527-533
        • Dong Z.
        • Yoneda J.
        • Kumar R.
        • Fidler I.J.
        Angiostatin-mediated suppression of cancer metastases by primary neoplasms engineered to produce granulocyte/macrophage colony-stimulating factor.
        J Exp Med. 1998; 188: 755-763
        • Coussens L.M.
        • Tinkle C.L.
        • Hanahan D.
        • Werb Z.
        MMP-9 supplied by bone marrow-derived cells contributes to skin carcinogenesis.
        Cell. 2000; 103: 481-490
        • Locati M.
        • Deuschle U.
        • Massardi M.L.
        • et al.
        Analysis of the gene expression profile activated by the CC chemokine ligand 5/RANTES and by lipopolysaccharide in human monocytes.
        J Immunol. 2002; 168: 3557-3562
        • Sakaguchi S.
        Naturally arising Foxp3-expressing CD25+CD4+ regulatory T cells in immunological tolerance to self and non-self.
        Nat Immunol. 2005; 6: 345-352
        • Curiel T.J.
        • Coukos G.
        • Zou L.
        • et al.
        Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival.
        Nat Med. 2004; 10: 942-949
        • Bronte V.
        • Serafini P.
        • Mazzoni A.
        • Segal D.M.
        • Zanovello P.
        L-arginine metabolism in myeloid cells controls T-lymphocyte functions.
        Trends Immunol. 2003; 24: 302-306
        • Schutyser E.
        • Struyf S.
        • Proost P.
        • et al.
        Identification of biologically active chemokine isoforms from ascitic fluid and elevated levels of CCL18/pulmonary and activation-regulated chemokine in ovarian carcinoma.
        J Biol Chem. 2002; 277: 24584-24593
        • Adema G.J.
        • Hartgers F.
        • Verstraten R.
        • et al.
        A dendritic-cell-derived C-C chemokine that preferentially attracts naive T cells.
        Nature. 1997; 387: 713-717
        • Gu L.
        • Tseng S.
        • Horner R.M.
        • Tam C.
        • Loda M.
        • Rollins B.J.
        Control of TH2 polarization by the chemokine monocyte chemoattractant protein-1.
        Nature. 2000; 404: 407-411
        • Knowles H.
        • Leek R.
        • Harris A.L.
        Macrophage infiltration and angiogenesis in human malignancy.
        Novartis Found Symp. 2004; 256: 189-200
        • Cramer T.
        • Yamanishi Y.
        • Clausen B.E.
        • et al.
        HIF-1α is essential for myeloid cell-mediated inflammation.
        Cell. 2003; 112: 645-657
        • Schioppa T.
        • Uranchimeg B.
        • Saccani A.
        • et al.
        Regulation of the chemokine receptor CXCR4 by hypoxia.
        J Exp Med. 2003; 198: 1391-1402
        • Ceradini D.J.
        • Kulkarni A.R.
        • Callaghan M.J.
        • et al.
        Progenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1.
        Nat Med. 2004; 10: 858-864
        • Griffiths L.
        • Binley K.
        • Iqball S.
        • et al.
        The macrophage – a novel system to deliver gene therapy to pathological hypoxia.
        Gene Ther. 2000; 7: 255-262
        • Carta L.
        • Pastorino S.
        • Melillo G.
        • Bosco M.C.
        • Massazza S.
        • Varesio L.
        Engineering of macrophages to produce IFN-gamma in response to hypoxia.
        J Immunol. 2001; 166: 5374-5380
        • Burke B.
        • Sumner S.
        • Maitland N.
        • Lewis C.E.
        Macrophages in gene therapy: cellular delivery vehicles and in vivo targets.
        J Leukoc Biol. 2002; 72: 417-428
        • Robinson S.C.
        • Scott K.A.
        • Wilson J.L.
        • Thompson R.G.
        • Proudfoot A.E.
        • Balkwill F.R.
        A chemokine receptor antagonist inhibits experimental breast tumor growth.
        Cancer Res. 2003; 63: 8360-8365
        • Conti I.
        • Rollins B.J.
        CCL2 (monocyte chemoattractant protein-1) and cancer.
        Semin Cancer Biol. 2004; 14: 149-154
        • Sessa C.
        • De Braud F.
        • Perotti A.
        • et al.
        Trabectedin for women with ovarian carcinoma after treatment with platinum and taxanes fails.
        J Clin Oncol. 2005; 23: 1867-1874
        • Allavena P.
        • Signorelli M.
        • Chieppa M.
        • et al.
        Anti-inflammatory properties of the novel antitumor agent yondelis (trabectedin): inhibition of macrophage differentiation and cytokine production.
        Cancer Res. 2005; 65: 2964-2971
        • Joseph I.B.
        • Isaacs J.T.
        Macrophage role in the anti-prostate cancer response to one class of antiangiogenic agents.
        J Natl Cancer Inst. 1998; 90: 1648-1653
        • Wahl L.
        • Kleinman H.K.
        Tumor-associated macrophages as targets for cancer therapy.
        J Natl Cancer Inst. 1998; 90: 1583-1584
        • Giraudo E.
        • Inoue M.
        • Hanahan D.
        An amino-bisphosphonate targets MMP-9-expressing macrophages and angiogenesis to impair cervical carcinogenesis.
        J Clin Invest. 2004; 114: 623-633
        • Guiducci C.
        • Vicari A.P.
        • Sangaletti S.
        • Trinchieri G.
        • Colombo M.P.
        Redirecting in vivo elicited tumor infiltrating macrophages and dendritic cells towards tumor rejection.
        Cancer Res. 2005; 65: 3437-3446
        • Sinha P.
        • Clements V.K.
        • Ostrand-Rosenberg S.
        Reduction of myeloid-derived suppressor cells and induction of M1 macrophages facilitate the rejection of established metastatic disease.
        J Immunol. 2005; 174: 636-645
        • Rauh M.J.
        • Sly L.M.
        • Kalesnikoff J.
        • et al.
        The role of SHIP1 in macrophage programming and activation.
        Biochem Soc Trans. 2004; 32: 785-788
        • Grohmann U.
        • Fallarino F.
        • Puccetti P.
        Tolerance, DCs and tryptophan: much ado about IDO.
        Trends Immunol. 2003; 24: 242-248
        • Muller A.J.
        • DuHadaway J.B.
        • Donover P.S.
        • Sutanto-Ward E.
        • Prendergast G.C.
        Inhibition of indoleamine 2,3-dioxygenase, an immunoregulatory target of the cancer suppression gene Bin1, potentiates cancer chemotherapy.
        Nat Med. 2005; 11: 312-319
        • Bronte V.
        • Serafini P.
        • Mazzoni A.
        • Segal D.M.
        • Zanovello P.
        L-arginine metabolism in myeloid cells controls T-lymphocyte functions.
        Trends Immunol. 2003; 24: 302-306
        • Rodriguez P.C.
        • Quiceno D.G.
        • Zabaleta J.
        • et al.
        Arginase I production in the tumor microenvironment by mature myeloid cells inhibits T-cell receptor expression and antigen-specific T-cell responses.
        Cancer Res. 2004; 64: 5839-5849
        • Bronte V.
        • Kasic T.
        • Gri G.
        • et al.
        Boosting antitumor responses of T lymphocytes infiltrating human prostate cancers.
        J Exp Med. 2005; 201: 1257-1268
        • Pikarsky E.
        • Porat R.M.
        • Stein I.
        • et al.
        NF-kappaB functions as a tumour promoter in inflammation-associated cancer.
        Nature. 2004; 431: 461-466
        • Greten F.R.
        • Eckmann L.
        • Greten T.F.
        • et al.
        IKKbeta links inflammation and tumorigenesis in a mouse model of colitis-associated cancer.
        Cell. 2004; 118: 285-296
        • Li A.
        • Varney M.L.
        • Singh R.K.
        Constitutive expression of growth regulated oncogene (gro) in human colon carcinoma cells with different metastatic potential and its role in regulating their metastatic phenotype.
        Clin Exp Metastasis. 2004; 21: 571-579
        • Haghnegahdar H.
        • Du J.
        • Wang D.
        • et al.
        The tumorigenic and angiogenic effects of MGSA/GRO proteins in melanoma.
        J Leukoc Biol. 2000; 67: 53-62
        • Azenshtein E.
        • Meshel T.
        • Shina S.
        • Barak N.
        • Keydar I.
        • Ben-Baruch A.
        The angiogenic factors CXCL8 and VEGF in breast cancer: regulation by an array of pro-malignancy factors.
        Cancer Lett. 2005; 217: 73-86
        • Teruya-Feldstein J.
        • Tosato G.
        • Jaffe E.S.
        The role of chemokines in Hodgkin’s disease.
        Leuk Lymphoma. 2000; 38: 363-371
        • Teichmann M.
        • Meyer B.
        • Beck A.
        • Niedobitek G.
        Expression of the interferon-inducible chemokine IP-10 (CXCL10), a chemokine with proposed anti-neoplastic functions, in Hodgkin lymphoma and nasopharyngeal carcinoma.
        J Pathol. 2005; 20: 68-75
        • Scala S.
        • Ottaiano A.
        • Ascierto P.A.
        • et al.
        Expression of CXCR4 predicts poor prognosis in patients with malignant melanoma.
        Clin Cancer Res. 2005; 11: 1835-1841
        • Smith J.R.
        • Braziel R.M.
        • Paoletti S.
        • Lipp M.
        • Uguccioni M.
        • Rosenbaum J.T.
        Expression of B-cell-attracting chemokine 1 (CXCL13) by malignant lymphocytes and vascular endothelium in primary central nervous system lymphoma.
        Blood. 2003; 101: 815-821
        • Ruckes T.
        • Saul D.
        • Van Snick J.
        • Hermine O.
        • Grassmann R.
        Autocrine antiapoptotic stimulation of cultured adult T-cell leukemia cells by overexpression of the chemokine I-309.
        Blood. 2001; 98: 1150-1159
        • Mori K.
        • Chano T.
        • Yamamoto K.
        • Matsusue Y.
        • Okabe H.
        Expression of macrophage inflammatory protein-1alpha in Schwann cell tumors.
        Neuropathology. 2004; 24: 131-135
        • Kouno J.
        • Nagai H.
        • Nagahata T.
        • et al.
        Up-regulation of CC chemokine, CCL3L1, and receptors, CCR3, CCR5 in human glioblastoma that promotes cell growth.
        J Neurooncol. 2004; 70: 301-307
        • Payne A.S.
        • Cornelius L.A.
        The role of chemokines in melanoma tumor growth and metastasis.
        J Invest Dermatol. 2002; 118: 915-922
        • Yi F.
        • Jaffe R.
        • Prochownik E.V.
        The CCL6 chemokine is differentially regulated by c-Myc and L-Myc, and promotes tumorigenesis and metastasis.
        Cancer Res. 2003; 63: 2923-2932
        • Kleinhans M.
        • Tun-Kyi A.
        • Gilliet M.
        • et al.
        Functional expression of the eotaxin receptor CCR3 in CD30+ cutaneous T-cell lymphoma.
        Blood. 2003; 101: 1487-1493
        • Vermeer M.H.
        • Dukers D.F.
        • ten Berge R.L.
        • et al.
        Differential expression of thymus and activation regulated chemokine and its receptor CCR4 in nodal and cutaneous anaplastic large-cell lymphomas and Hodgkin’s disease.
        Mod Pathol. 2002; 15: 838-844
        • Hanamoto H.
        • Nakayama T.
        • Miyazato H.
        • et al.
        Expression of CCL28 by Reed-Sternberg cells defines a major subtype of classical Hodgkin’s disease with frequent infiltration of eosinophils and/or plasma cells.
        Am J Pathol. 2004; 164: 997-1006
        • Marchesi F.
        • Monti P.
        • Leone B.E.
        • et al.
        Increased survival, proliferation, and migration in metastatic human pancreatic tumor cells expressing functional CXCR4.
        Cancer Res. 2004; 64: 8420-8427
        • Mantovani A.
        • Bottazzi B.
        • Colotta F.
        • Sozzani S.
        • Ruco L.
        The origin and function of tumor-associated macrophages.
        Immunol Today. 1992; 13: 265-270
        • Clerici M.
        • Shearer G.M.
        • Clerici E.
        Cytokine dysregulation in invasive cervical carcinoma and other human neoplasias: time to consider the TH1/TH2 paradigm.
        J Natl Cancer Inst. 1998; 90: 261-263