Advertisement

Modelling approaches for angiogenesis

      Abstract

      The development of a functional vasculature within a tumour is a requisite for its growth and progression. This fact has led to the design of therapies directed toward the tumour vasculature, aiming either to prevent the formation of new vessels (anti-angiogenic) or to damage existing vessels (vascular targeting). The development of agents with different mechanisms of action requires powerful preclinical models for the analysis and optimization of these therapies. This review concerns ‘classical’ assays of angiogenesis in vitro and in vivo, recent approaches to target identification (analysis of gene and protein expression), and the study of morphological and functional changes in the vasculature in vivo (imaging techniques). It mainly describes assays designed for anti-angiogenic compounds, indicating, where possible, their application to the study of vascular-targeting agents.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to European Journal of Cancer
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Carmeliet P.
        • Jain R.K.
        Angiogenesis in cancer and other diseases.
        Nature. 2000; 407: 249-257
        • Folkman J.
        Angiogenesis in cancer, vascular, rheumatoid and other disease.
        Nat. Med. 1995; 1: 27-31
        • Giavazzi R.
        • Taraboletti G.
        Preclinical development of metalloproteasis inhibitors in cancer therapy.
        Crit. Rev. Oncol. Hematol. 2001; 37: 53-60
        • Giavazzi R.
        • Nicoletti M.I.
        Small molecules in anti-angiogenic therapy.
        Curr. Opin. Investig. Drugs. 2002; 3: 482-491
        • Kerbel R.
        • Folkman J.
        Clinical translation of angiogenesis inhibitors.
        Nat. Rev. Cancer. 2002; 2: 727-739
        • Taraboletti G.
        • Margosio B.
        Antiangiogenic and antivascular therapy for cancer.
        Current Opin. Pharmacol. 2001; 1: 378-384
        • Chaplin D.J.
        • Dougherty G.J.
        Tumour vasculature as a target for cancer therapy.
        Br. J. Cancer. 1999; 80: 57-64
        • Vailhe B.
        • Vittet D.
        • Feige J.J.
        In vitro models of vasculogenesis and angiogenesis.
        Lab. Invest. 2001; 81: 439-452
        • Auerbach R.
        • Lewis R.
        • Shinners B.
        • Kubai L.
        • Akhtar N.
        Angiogenesis assays.
        Clin. Chem. 2003; 49: 32-40
        • Jain R.K.
        • Schlenger K.
        • Hockel M.
        • Yuan F.
        Quantitative angiogenesis assays.
        Nat. Med. 1997; 3: 1203-1208
        • Jain R.K.
        • Munn L.L.
        • Fukumura D.
        Dissecting tumour pathophysiology using intravital microscopy.
        Nat. Rev. Cancer. 2002; 2: 266-276
        • Stacker S.A.
        • Achen M.G.
        • Jussila L.
        • Baldwin M.E.
        • Alitalo K.
        Lymphangiogenesis and cancer metastasis.
        Nat. Rev. Cancer. 2002; 2: 573-583
        • Rafii S.
        • Lyden D.
        • Benezra R.
        • Hattori K.
        • Heissig B.
        Vascular and haematopoietic stem cells.
        Nat. Rev. Cancer. 2002; 2: 826-835
        • St Croix B.
        • Rago C.
        • Velculescu V.
        • et al.
        Genes expressed in human tumor endothelium.
        Science. 2000; 289: 1197-1202
        • Alessandri G.
        • Chirivi R.G.
        • Fiorentini S.
        • et al.
        Phenotypic and functional characteristics of tumour-derived microvascular endothelial cells.
        Clin. Exp. Metastasis. 1999; 17: 655-662
        • Belotti D.
        • Vergani V.
        • Drudis T.
        • et al.
        The microtubule-affecting drug paclitaxel has antiangiogenic activity.
        Clin. Cancer Res. 1996; 2: 1843-1849
        • Hanahan D.
        • Bergers G.
        • Bergsland E.
        Less is more, regularly.
        J. Clin. Invest. 2000; 105: 1045-1047
        • Klement G.
        • Baruchel S.
        • Rak J.
        • et al.
        Continuous low-dose therapy with vinblastine and VEGF receptor-2 antibody induces sustained tumor regression without overt toxicity.
        J. Clin. Invest. 2000; 105: R15-R24
        • Miller K.D.
        • Sweeney C.J.
        • Sledge Jr., G.W.
        Redefining the target.
        J. Clin. Oncol. 2001; 19: 1195-1206
        • Taraboletti G.
        • Roberts D.
        • Liotta L.A.
        • Giavazzi R.
        Platelet thrombospondin modulates endothelial cell adhesion, motility, and growth.
        J. Cell Biol. 1990; 111: 765-772
        • Taraboletti G.
        • Belotti D.
        • Dejana E.
        • Mantovani A.
        • Giavazzi R.
        Endothelial cell migration and invasiveness are induced by a soluble factor produced by murine endothelioma cells transformed by polyoma virus middle T oncogene.
        Cancer Res. 1993; 53: 3812-3816
        • Taraboletti G.
        • Garofalo A.
        • Belotti D.
        • et al.
        Inhibition of angiogenesis and murine hemangioma growth by batimastat, a synthetic inhibitor of matrix metalloproteinases.
        J. Natl. Cancer Inst. 1995; 87: 293-298
        • Montesano R.
        • Pepper M.S.
        Three-dimensional in vitro assay of endothelial cell invasion and capillary tube morphogenesis.
        in: Mironov C.D.L.D. Sage E.H. Vascular morphogenesis: in vivo, in vitro, in mente. Birkhäuser, Boston1998: 79-110
        • Micheletti G.
        • Poli M.
        • Borsotti P.
        • et al.
        Vascular-targeting activity of ZD6126, a novel tubulin-binding agent.
        Cancer Res. 2003; 63: 1534-1537
        • Feraud O.
        • Vittet D.
        Murine embryonic stem cell in vitro differentiation.
        Histol. Histopathol. 2003; 18: 191-199
        • Wartenberg M.
        • Gunther J.
        • Hescheler J.
        • Sauer H.
        The embryoid body as a novel in vitro assay system for antiangiogenic agents.
        Lab. Invest. 1998; 78: 1301-1314
        • Wartenberg M.
        • Donmez F.
        • Ling F.C.
        • Acker H.
        • Hescheler J.
        • Sauer H.
        Tumor-induced angiogenesis studied in confrontation cultures of multicellular tumor spheroids and embryoid bodies grown from pluripotent embryonic stem cells.
        Faseb. J. 2001; 15: 995-1005
        • Sauer H.
        • Gunther J.
        • Hescheler J.
        • Wartenberg M.
        Thalidomide inhibits angiogenesis in embryoid bodies by the generation of hydroxyl radicals.
        Am. J. Pathol. 2000; 156: 151-158
        • Nicosia R.F.
        The rat aorta model of angiogenesis and its applications.
        in: Mironov C.D.L.D. Sage E.H. Vascular morphogenesis: in vivo, in vitro, in mente. Birkhäuser, Boston1998: 111-139
        • Nicosia R.F.
        • Ottinetti A.
        Growth of microvessels in serum-free matrix culture of rat aorta. A quantitative assay of angiogenesis in vitro.
        Lab. Invest. 1990; 63: 115-122
        • Plunkett M.L.
        • Hailey J.A.
        An in vivo quantitative angiogenesis model using tumor cells entrapped in alginate.
        Lab. Invest. 1990; 62: 510-517
        • Passaniti A.
        • Taylor R.M.
        • Pili R.
        • et al.
        A simple, quantitative method for assessing angiogenesis and antiangiogenic agents using reconstituted basement membrane, heparin, and fibroblast growth factor.
        Lab. Invest. 1992; 67: 519-528
        • Taraboletti G.
        • Micheletti G.
        • Giavazzi R.
        • Riva A.
        IDN 5390.
        Anticancer Drugs. 2003; 14: 255-258
        • Gimbrone Jr., M.A.
        • Cotran R.S.
        • Leapman S.B.
        • Folkman J.
        Tumor growth and neovascularization.
        J. Natl. Cancer Inst. 1974; 52: 413-427
        • Chang L.
        • Kaipainen A.
        • Folkman J.
        Lymphangiogenesis new mechanisms.
        Ann. N. Y. Acad. Sci. 2002; 979: 111-119
        • Ribatti D.
        • Vacca A.
        Models for studying angiogenesis in vivo.
        Int. J. Biol. Markers. 1999; 14: 207-213
        • Ribatti D.
        • Nico B.
        • Vacca A.
        • Roncali L.
        • Burri P.H.
        • Djonov V.
        Chorioallantoic membrane capillary bed.
        Anat. Rec. 2001; 264: 317-324
        • Nguyen M.
        • Shing Y.
        • Folkman J.
        Quantitation of angiogenesis and antiangiogenesis in the chick embryo chorioallantoic membrane.
        Microvasc. Res. 1994; 47: 31-40
        • Seandel M.
        • Noack-Kunnmann K.
        • Zhu D.
        • Aimes R.T.
        • Quigley J.P.
        Growth factor-induced angiogenesis in vivo requires specific cleavage of fibrillar type I collagen.
        Blood. 2001; 97: 2323-2332
        • Jain R.K.
        Angiogenesis and lymphangiogenesis in tumors.
        Cold Spring Harb. Symp. Quant. Biol. 2002; 67: 239-248
        • Chan J.
        • Bayliss P.E.
        • Wood J.M.
        • Roberts T.M.
        Dissection of angiogenic signaling in zebrafish using a chemical genetic approach.
        Cancer Cell. 2002; 1: 257-267
        • Cross L.M.
        • Cook M.A.
        • Lin S.
        • Chen J.N.
        • Rubinstein A.L.
        Rapid analysis of angiogenesis drugs in a live fluorescent zebrafish assay.
        Arterioscler. Thromb. Vasc. Biol. 2003; 23: 911-912
        • O'Reilly M.S.
        • Holmgren L.
        • Shing Y.
        • et al.
        Angiostatin.
        Cold Spring Harb. Symp. Quant. Biol. 1994; 59: 471-482
        • Giavazzi R.
        • Giuliani R.
        • Coltrini D.
        • et al.
        Modulation of tumor angiogenesis by conditional expression of fibroblast growth factor-2 affects early but not established tumors.
        Cancer Res. 2001; 61: 309-317
        • Bergers G.
        • Song S.
        • Meyer-Morse N.
        • Bergsland E.
        • Hanahan D.
        Benefits of targeting both pericytes and endothelial cells in the tumor vasculature with kinase inhibitors.
        J. Clin. Invest. 2003; 111: 1287-1295
        • Hlatky L.
        • Hahnfeldt P.
        • Folkman J.
        Clinical application of antiangiogenic therapy.
        J. Natl. Cancer Inst. 2002; 94: 883-893
        • McDonald D.M.
        • Choyke P.L.
        Imaging of angiogenesis.
        Nat. Med. 2003; 9: 713-725
        • Rudin M.
        • Weissleder R.
        Molecular imaging in drug discovery and development.
        Nat. Rev. Drug Discov. 2003; 2: 123-131
        • Neeman M.
        • Dafni H.
        Structural, functional, and molecular MR imaging of the microvasculature Preclinical MRI experience in imaging angiogenesis.
        Annu. Rev. Biomed. Eng. 2003; 5: 29-56
        • Arap W.
        • Pasqualini R.
        • Ruoslahti E.
        Cancer treatment by targeted drug delivery to tumor vasculature in a mouse model.
        Science. 1998; 279: 377-380
        • Joyce J.A.
        • Laakkonen P.
        • Bernasconi M.
        • Bergers G.
        • Ruoslahti E.
        • Hanahan D.
        Stage-specific vascular markers revealed by phage display in a mouse model of pancreatic islet tumorigenesis.
        Cancer Cell. 2003; 4: 393-403
        • Hoffman J.A.
        • Giraudo E.
        • Singh M.
        • et al.
        Progressive vascular changes in a transgenic mouse model of squamous cell carcinoma.
        Cancer Cell. 2003; 4: 383-391
        • Michener C.M.
        • Ardekani A.M.
        • Petricoin 3rd E.F.
        • Liotta L.A.
        • Kohn E.C.
        Genomics and proteomics.
        Cancer Detect. Prev. 2002; 26: 249-255