Advertisement

A potential role for imaging technology in anticancer efficacy evaluations

      Abstract

      The introduction of imaging methods suitable for rodents offers opportunities for new anticancer efficacy models. Traditional models do not provide the level of sensitivity afforded by these precise and quantitative techniques. Bioluminescent endpoints, now feasible because of sensitive charge-coupled device cameras, can be non-invasively detected in live animals. Currently, the most common luminescence endpoint is firefly luciferase, which, in the presence of O2 and ATP, catalyses the cleavage of the substrate luciferin and results in the emission of a photon of light. In vivo implantation of tumour cells transfected with the luciferase gene allows sequential monitoring of tumour growth within the viscera by measuring these photon signals. Furthermore, tumour cell lines containing the luciferase gene transcribed from an inducible promoter offer opportunities to study molecular-target modulation without the need for ex vivo evaluations of serial tumour samples. In conjunction with this, transgenic mice bearing a luciferase reporter mechanism can be used to monitor the tumour microenvironment as well as to signal when transforming events occur. This technology has the potential to reshape the efficacy evaluations and drug-testing algorithms of the future.

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribe:

      Subscribe to European Journal of Cancer
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Plowman J.
        • Dykes D.J.
        • Hollingshead M.
        • Simpson-Herren L.
        • Alley M.C.
        Human tumor xenograft models in NCI drug development.
        in: Teicher B. Anticancer Drug Development Guide: Preclinical Screening, Clinical Trials and Approval. Humana Press, Totowa, NJ1997: 101-125
        • Corey E.
        • Quinn J.E.
        • Vessella R.L.
        A novel method of generating prostate cancer metastases from orthotopic implants.
        Prostate. 2003; 56: 110-114
        • te Velde E.A.
        • Vogten J.M.
        • Gebbink M.F.
        • van Gorp J.M.
        • Voest E.E.
        • Borel Rinkes I.H.
        Enhanced antitumor efficacy by combining conventional chemotherapy with angiostatin or endostatin in a liver metastasis model.
        Br. J. Surg. 2002; 89: 1302-1309
        • Contag C.H.
        • Jenkins D.
        • Contag P.R.
        • Negrin R.S.
        Use of reporter genes for optical measurements of neoplastic disease in vivo.
        Neoplasia. 2000; 2: 41-52
        • Weissleder R.
        • Ntziachristos V.
        Shedding light onto live molecular targets.
        Tech. Trends. 2003; 9: 123-128
        • Contag P.R.
        Whole-animal cellular and molecular imaging to accelerate drug development.
        DDT. 2002; 7: 555-562
        • Evelhoch J.L.
        • Gillies R.J.
        • Karczmar G.S.
        • et al.
        Application of magnetic resonance in model systems.
        Neoplasia. 2000; 2: 152-165
        • Mahmood U.
        • Weissleder R.
        Near-infrared optical imaging of proteases in cancer.
        Mol. Cancer Ther. 2003; 2: 489-496
        • Mankoff D.A.
        • Dehdashti F.
        • Shields A.F.
        Characterizing tumors using metabolic imaging.
        Neoplasia. 2000; 2: 71-86
        • Ntziachristos V.
        • Bremer C.
        • Weissleder R.
        Fluorescence imaging with near-infrared light.
        Eur. Radiol. 2003; 13: 195-208
        • Paulus M.J.
        • Gleason S.S.
        • Kennel S.J.
        • Hunsicker P.R.
        • Johnson D.K.
        High resolution X-rad computed tomography.
        Neoplasia. 2000; 2: 62-70
        • Rice B.W.
        • Cable M.D.
        • Nelson M.B.
        In vivo imaging of light-emitting probes.
        J. Biomed. Optics. 2001; 6: 432-440
        • Rudin M.
        • Weissleder R.
        Molecular imaging in drug discovery and development.
        Nat Reviews Drug Discovery. 2003; 2: 123-131
        • Bremer C.
        • Ntziachristos V.
        • Weissleder R.
        Optical-based molecular imaging.
        Eur. Radiol. 2003; 13: 231-243
        • Bremer C.
        • Mustafa M.
        • Bogdanov Jr., A.
        • Ntziachristos V.
        • Petrovsky A.
        • Weissleder R.
        Stead-state blood volume measurements in experimental tumors with different angiogenic burdens a study in mice.
        Radiology. 2003; 226: 214-220
        • Kim R.Y.
        • Savellano M.D.
        • Weissleder R.
        • Bogdanov Jr., A.
        Steady-state and dynamic contrast MR imaging of human prostate cancer xenograft tumors.
        Technol. Cancer Res. Treat. 2002; 1: 489-495
        • Kruger R.A.
        • Kiser W.L.
        • Reinecke D.R.
        • Kruger G.A.
        • Miller K.D.
        Thermoacoustic molecular imaging of small animals.
        Mol. Imaging. 2003; 2: 113-123
        • Tai Y.C.
        • Chatziioannou A.F.
        • Yang Y.
        • et al.
        MicroPET II.
        Phys. Med. Biol. 2003; 48: 1519-1537
        • Cherry S.R.
        • Gambhir S.S.
        Use of positron emission tomography in animal research.
        ILAR J. 2001; 42: 219-232
        • Cherry S.R.
        Fundamentals of positron emission tomography and application in preclinical drug development.
        J. Clin. Pharmacol. 2001; 41: 482-491
      1. Yang, H., Berger, F., Tran, C., Gambhir, S.S., Sawyers, C.L., MicroPET imaging of prostate cancer in LNCAP-SR39TK-GFP mouse xenografts. Prostate 2003, 55, 39–47.

        • Hooper C.E.
        • Ansorge R.E.
        • Browne H.M.
        • Tomkins P.
        CCD imaging of luciferase gene expression in single mammalian cells.
        J. Biolumin. Chemilumin. 1990; 5: 123-130
        • Bhaumik S.
        • Gambhir S.S.
        Optical imaging of Renilla luciferase reporter gene expression inliving mice.
        Proc. Natl. Acad. Sci. U.S.A. 2002; 99: 377-382
        • Bronstein I.
        • Fortin J.
        • Stanley P.E.
        • Stewart S.A.B.
        • Kricka L.J.
        Chemiluminescent and bioluminescent reporter gene assays.
        Analyt. Biochem. 1994; 219: 169-181
        • Diehn F.E.
        • Costouros N.G.
        • Miller M.S.
        • et al.
        Noninvasive fluorescent imaging reliably estimates biomass in vivo.
        BioTechniques. 2002; 33: 1250-1255
        • Burgos J.S.
        • Rosol M.
        • Moats R.A.
        • Khankaldyyan V.
        • Kohn D.B.
        • Nelson Jr., M.D.
        • Laug W.E.
        Time course of bioluminescent signal in orthotopic and heterotopic brain tumors in nude mice.
        BioTechniques. 2003; 34: 1184-1188
        • Mahmood U.
        • Tung C.-H.
        • Tang Y.
        • Weissleder R.
        Feasibility of in vivo multichannel optical imaging of gene expression.
        Radiology. 2002; 224: 446-451
        • Moon W.K.
        • Lin Y.
        • O'Loughlin R.
        • Tang Y.
        • Kim D.-E.
        • Weissleder R.
        • Tung C.-H.
        Enhanced tumor detection using a folate receptor-targeted near-infrared fluorochrome conjugate.
        Bioconjugate Chem. 2003; 14: 539-545
        • Petrovsky A.
        • Schellenberger E.
        • Josephson L.
        • Weissleder R.
        • Bodganov Jr., A.
        Near-infrared fluorescent imaging of tumor apoptosis.
        Cancer Res. 2003; 63: 1936-1942
        • Schellenberge E.A.
        • Bogdanov Jr., A.
        • Petrovsky A.
        • Ntziachristos V.
        • Weissleder R.
        • Josephson L.
        Optical imaging of apoptosis as a biomarker of tumor response to chemotherapy.
        Neoplasia. 2003; 5: 187-192
        • Graves E.E.
        • Ripoll J.
        • Weissleder R.
        • Ntziachristos V.
        A submillimeter resolution fluorescence molecular imging system for small animal imaging.
        Med. Phys. 2003; 30: 901-911
        • Wang J.W.
        • Yang M.
        • Wang X.
        • Sun F.X.
        • Li S.M.
        • Yagi S.
        • Hoffman R.M.
        Antimetastatic efficacy of oral 5-FU imaged by green fluorescent protein in real time.
        Anticancer Res. 2003; 23: 1-6
        • Yamamoto N.
        • Yang M.
        • Jiang P.
        • et al.
        Clin. Exp. Metastasis. 2003; 20: 181-185
        • deWet J.R.
        • Wood K.V.
        • Jekinski D.R.
        • DeLuca M.
        Cloning of firefly luciferase cDNA and the expression of active luciferase in Escherichia coli.
        Proc. Natl. Acad. Sci. U.S.A. 1985; 82: 7870-7873
        • de Wet J.R.
        • Wood K.V.
        • DeLuca M.
        • Helinski D.R.
        • Subramani S.
        Firefly luciferase gene.
        Mol. Cell. Biol. 1987; 7: 725-737
        • Contag C.H.
        • Spilman S.D.
        • Contag P.R.
        • et al.
        Visualizing gene expression in living mammals using a bioluminescent reporter.
        Photochem. Photobiol. 1997; 66: 523-531
        • Edinger M.
        • Sweeney T.J.
        • Tucker A.A.
        • Olomu A.B.
        • Negrin R.S.
        • Contag C.H.
        Noninvasive assessment of tumor cell proliferation in animal models.
        Neoplasia. 1999; 1: 303-310
        • Himmler A.
        • Stratowa C.
        • Czernilofsky A.P.
        Functional testing of human dopamine D1 and D5 receptors expressed in stable camp-responsive luciferase reporter cell lines.
        J. Recept. Res. 1993; 13: 79-94
      2. Nguyen, J.T., Machado, H., Herschman, H.R., Repetitive, noninvasive imaging of cyclooxygenase-w gene expression in living mice. Molec. Imaging Biol., 2003, 5, 248–256.

        • Pazzagli M.
        • Devine J.H.
        • Peterson D.O.
        • Baldwin T.O.
        Use of bacterial and firefly luciferases as reporter genes in DEAE-dextran-mediated transfection of mammalian cells.
        Anal. Biochem. 1992; 204: 315-323
        • Pons M.
        • Gagne D.
        • Nicolas J.C.
        • Mehtali M.
        A new cellular model of response to estrogens.
        Biotechniques. 1990; 9: 450-459
        • Thompson J.F.
        • Hayes L.S.
        • Lloyd D.B.
        Modluation of firefly luciferase stability and impact on studies of gene regulation.
        Gene. 1991; 103: 171-177
        • Rapisarda A.
        • Uranchimeg B.
        • Scudiero D.A.
        • et al.
        Identification of small molecule inhibitors of hypoxia-inducible factor 1 transcriptional activation pathway.
        Cancer Res. 2002; 62: 4316-4324
        • Hollingshead M.
        • Plowman J.
        • Alley M.
        • Mayo J.
        • Sausville
        The hollow fiber assay.
        in: Fiebig H.H. Burger A.M. Contributions to Oncology Vol 54 Relevance of Tumor Models for Anticancer Drug Development. Karger, Basel1999: 109-120