Orthotopic models of cancer for preclinical drug evaluation

advantages and disadvantages


      Considering the enormous effort that has taken place over the years to discover new chemotherapeutic drugs for treating the common cancers, the conventional murine and xenograft test systems used to test efficacy for drug development have identified only a limited number of useful agents that are active clinically at well tolerated doses. In recent years, considerable effort has been made to develop more clinically relevant models by the use of orthotopic transplantation of tumour material in rodents. It has been shown that it is now possible to transplant tumour material from a variety of tumour types into the appropriate anatomical site and often these tumours will metastasise in a similar manner and to similar locations as the same tumour type will in human cancer. As yet, although a body of literature has amassed on the technique itself and its implications for metastasis, there are relatively few laboratories using these test systems in drug development programmes. Nevertheless, given the expertise now being developed and some interesting observations being made on the role of the tumour site on response to therapeutic agents, it is likely that the use of orthotopic systems will strengthen our ability to select the most appropriate molecules for recommended use in clinical studies.


      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'


      Subscribe to European Journal of Cancer
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect


        • Plowman J.
        • Dykes D.J.
        • Hollingshead M.
        • Simpson-Herren L.
        • Alley M.C.
        Human tumor xenograft models in NCI drug development.
        in: Teicher B. Anticancer Drug Development Guide: Preclinical Screening, Clinical Trials and Approval. Humana Press, Totowa, NJ1997: 101-125
        • Muggia F.M.
        Closing the loop.
        Cancer Treat. Rep. 1987; 71: 1-2
        • Corbett T.H.
        • Valeriote F.A.
        • Baker L.H.
        Is the P388 murine tumor no longer adequate as a drug discovery model?.
        Investigational New Drugs. 1987; 5: 3-20
        • Double J.A.
        • Bibby M.C.
        Therapeutic Index.
        J. Natl. Cancer Inst. 1989; 81: 988-994
        • Boyd M.R.
        Status of the NCI preclinical antitumor drug discovery screen.
        in: De Vita Jr., V.T. Hellman S Rosenberg S.A. Cancer Principles and Practice of Oncology Update, vol 3. Lippincott, Philadelphia1989: 1-12

        • Fiebig H.H.
        • Berger D.P.
        Preclinical Phase II trials.
        in: Boven E. Winograd B. The Nude Mouse in Oncology Research. CRC Press, Boca Raton1995: 318-335
        • Johnson J.I.
        • Decker S.
        • Zaharevitz D.
        • et al.
        Relationships between drug activity in NCI preclinical in vitro and in vivo models and early clinical trials.
        Br. J. Cancer. 2001; 84: 1424-1431
        • Tan M.H.
        • Holyoke E.D.
        • Goldrosen M.C.
        Murine colon adenocarcinomas.
        J. Natl. Cancer Inst. 1977; 59: 1537-1544
        • Sugarbaker E.V.
        Patterns of metastasis in human malignancies.
        Cancer Res. Rev. 1981; 2: 235-278
        • Double J.A.
        • Ball C.R.
        Chemotherapy of transplantable adenocarcinomas of the colon in mice.
        Cancer Chemother. Rep. 1975; 59: 1083-1089
        • Cowen D.M.
        • Double J.A.
        • Cowen P.N.
        Some biologic characteristics of transplantable lines of mouse adenocarcinoma of the colon.
        J. Natl. Cancer Inst. 1980; 64: 675-681
        • Double J.A.
        • Cifuentes de Castro L.
        Chemotherapy of transplantable adenocarcinomas of the colon in mice II development and characterisation of an ascitic line.
        Cancer Treat. Rep. 1978; 62: 85-90
        • Bibby M.C.
        • Double J.A.
        • Morris C.M.
        Antitumour activity of TCNU in a panel of transplantable murine colon tumours.
        Europ. J. Cancer Clin. Oncol. 1988; 24: 1361-1364
      2. Ramakrishnan S. Establishment and characterisation of an experimental metastatic model of an adenocarcinoma of the mouse colon. MPhil thesis, University of Bradford, Bradford, UK, 1983.

        • Dong Z.
        • Radinsky R.
        • Fan D.
        • Tsan R.
        • Bucana C.D.
        • Wilmanns C.
        • Fidler I.J.
        Organ-specific modulation of steady-state mdr gene expression and drug resistance in murine colon cancer cells.
        J. Natl. Cancer Inst. 1994; 86: 913-920
        • Fidler I.J.
        • Wilmanns C.
        • Staroselsky A.
        • Radinsky J.R.
        • Dong Z.
        • Fan D.
        Modulations of tumor cell response to chemotherapy by the organ environment.
        Cancer Metastasis Rev. 1994; 13: 209-222
        • Fidler I.J.
        • Naito S.
        • Pathak S.
        Orthotopic implantation is essential for the selection, growth and metastasis of human renal cell cancer in nude mice.
        Cancer Metastasis Rev. 1990; 9: 149-165
        • Fidler I.J.
        Orthotopic implantation of human colon carcinomas into nude mice provides a valuable model for the biology and therapy of metastasis.
        Cancer Metastasis Rev. 1991; 10: 229-243
        • Gutman M.
        • Fidler I.J.
        Biology of human colon cancer metastasis.
        World J. Surg. 1995; 19: 226-234
        • Hoffman R.M.
        Fertile seed and rich soil.
        in: Teicher B. Anticancer Drug Development Guide: Preclinical Screening, Clinical Trials and Approval. Humana Press, Totowa NJ1997: 127-144
        • Killion J.J.
        • Radinsky R.
        • Fidler I.J.
        Orthotopic models are necessary to predict therapy of transplantable tumors in mice.
        Cancer Met. Rev. 1999; 17: 279-284
        • Yang M.
        • Jiang P.
        • Sun F.-X.
        • et al.
        A fluorescent orthotopic bone metastasis model of human prostate cancer.
        Cancer Research. 1999; 59: 781-786
        • Rosol T.J.
        • Tannehill-Gregg S.H.
        • LeRoy B.E.
        • Mandl S.
        • Contag C.H.
        Animal models of bone metastasis.
        Cancer. 2003; 97: 748-757
        • Pasqualini R.
        • Ruoslahti E.
        Organ targeting in vivo using phage display peptide libraries.
        Nature. 1996; 380: 364-366
        • Atwell G.J.
        • Rewcastle G.W.
        • Baguley B.C.
        • Denny W.A.
        Synthesis and antitumour activity of topologically related analogues of flavone acetic acid.
        Anticancer Drug Design. 1989; 4: 161-169
        • Pettit G.R.
        • Temple C.J.R.
        • Nnarayanan V.L.
        • et al.
        Antineoplastic agent 322. Synthesis of combretastatin A4 prodrugs.
        Anticancer Drug Des. 1995; 10: 299-309
        • Laws A.L.
        • Matthew A.M.
        • Bibby M.C.
        • Double J.A.
        The activity of 5,6-MeXAA on a subcutaneous and orthotopic model of human colon cancer.
        Br. J. Cancer. 1995; 71: 40
        • Grosios K.
        • Holwell S.E.
        • McGown A.T.
        • Pettit G.R.
        • Bibby M.C.
        In vivo and in vitro evaluation of combretastatin A-4 and its sodium phosphate prodrug.
        Br. J. Cancer. 1999; 81: 1318-1327
        • Holwell S.E.
        • Cooper P.A.
        • Thompson M.J.
        • et al.
        Anti-tumor and anti-vascular effects of the novel tubulin-binding agent combretastatin A-1 phosphate.
        Anticancer Res. 2002; 22: 3933-3940
        • Denekamp J.
        Endothelial cell proliferation as a novel approach to targeting tumour therapy.
        Br. J. Cancer. 1982; 45: 136-139
        • Hirst D.G.
        • Wood P.J.
        The control of tumour blood flow for therapeutic benefit.
        BIR Rep. 1989; 19: 76
        • Chan R.C.
        • Babbs C.F.
        • Vetter R.J.
        • Lamar C.H.
        Abnormal response of tumor vasculature to vasoactive drugs.
        J. Natl. Cancer Inst. 1984; 72: 145-150
        • Jirtle R.L.
        Chemical modifications of tumour blood flow.
        Int. J. Hyperthermia. 1988; 4: 355-371
        • Chaplin D.J.
        • Acker B.
        The effect of hydralazine on the tumor cytotoxicity of the hypoxic cell cytotoxin RSU-1069 evidence for therapeutic gain.
        Int. J. Radiat. Oncol. Biol. Phys. 1987; 13: 579-585
        • Brown J.M.
        Exploitation of bioreductive agents with vaso-active drugs.
        in: Fieldan E.M. Fowler J.F. Hendry J.H. Scott D. Radiation Research: Proceedings of the 8th International Congress of Radiation Research. Taylor & Francis, London1987: 719-724
        • Bibby M.C.
        • Sleigh N.R.
        • Loadman P.M.
        • Double J.A.
        Potentiation of EO9 anti-tumour activity by hydralazine.
        Eur. J. Cancer. 1993; 29A: 1033-1035
        • Cowen S.E.
        • Loadman P.M.
        • Double J.A.
        • Bibby M.C.
        Hydralazine alters murine mitomycin C plasma pharmacokinetics—a possible explanation of drug potentiation.
        Br. J. Cancer. 1994; 69: 41
        • Stratford I.J.
        • Adams G.E.
        • Godden J.
        • Nolan J.
        • Howells N.
        • Timpson N.
        Potentiation of the anti-tumour effect of melphalan by the vasoactive agent hydralazine.
        Br. J. Cancer. 1988; 58: 122-127
        • Quinn P.K.M.
        • Bibby M.C.
        • Cox J.A.
        • Crawford S.M.
        The influence of hydralazine on the vasculature, blood perfusion and chemosensitivity of MAC tumours.
        Br. J. Cancer. 1992; 66: 323-330
        • Field S.B.
        • Needham S.
        • Burney I.A.
        • Maxwell R.J.
        • Coggle J.E.
        • Griffiths J.R.
        Differences in vascular responses between primary and transplanted tumours.
        Br. J. Cancer. 1991; 63: 723-726
        • Cowen S.E.
        • Bibby M.C.
        • Double J.A.
        Characterisation of the vasculature within a murine adenocarcinoma growing in different sites to evaluate the potential of vascular therapies.
        Acta Oncol. 1995; 43: 357-360
        • Rowell N.P.
        • Flower M.A.
        • McCready V.R.
        • Cronin B.
        • Horwich A.
        The effects of single-dose oral hydralazine on blood flow through human lung tumours.
        Radiother. Oncol. 1990; 18: 283
        • Kuo T.-H.
        • Kubota T.
        • Watanabe M.
        • et al.
        Site-specific chemosensitivity of human small-cell lung carcinoma growing orthotopically compared to subcutaneously in SCID mice.
        Anticancer Res. 1993; 13: 627-630
        • Chishima T.
        • Miyagi Y.
        • Wang X.
        • et al.
        Cancer invasion and micrometastasis visualized in live tissue by green fluorescent protein expression.
        Cancer Res. 1997; 57: 2042-2047
        • Lin W.C.
        • Pretlow T.P.
        • Pretlow T.G.
        • Culp L.A.
        Bacterial lacZ gene as a highly sensitive marker to detect micrometastasis formation during tumor progression.
        Cancer Res. 1990; 50: 2808-2817
        • El Hilali N.
        • Rubio N.
        • Martinez-Villacampa M.
        • Blanco J.
        Combined non-invasive imaging and luminometric quantification of luciferase-labeled human prostate tumors and metastases.
        Laboratory Investigation. 2002; 82: 1563-1571
        • Zhao S.
        • Moore J.V.
        • Waller M.L.
        • et al.
        Positron emission tomography of murine liver metastases and the effects of treatment by combretastatin A-4.
        Eur. J. Nuclear Medicine. 1999; 26: 231-238
        • Wang X.
        • Fu X.
        • Brown P.D.
        • Crimmin M.J.
        • Hoffman R.M.
        Matrix metalloproteinase inhibitor BB-94 (Batimastat) inhibits human colon tumor growth and spread in a patient-like orthotopic model in nude mice.
        Cancer Research. 1994; 54: 4726-4728
        • Bibby M.C.
        Making the most of rodent tumour systems in cancer drug discovery.
        Br. J. Cancer. 1999; 79: 1633-1640